
Conversation Extension

Quick Start Guide

Introduction
Suppose you just wanted to put an NPC into your game that the protagonist could talk to about the
weather. Here is an example transcript of what that conversation would look like using the
Conversation extension:

> talk to old man
" ""Hi there old-timer!"" you tell the old man. ""The name's Janet. I just moved
into town and they say you're the man to talk to about the weather in these
parts.""

""Pleased to meet you, Janet,"" he replies. ""You can call me Geezer. The weather
around here can be a tad fickle, but I reckon I know her better than most folks.
What do you want to know?""

-- (topics) –
 Geezer
 mudslides

> t mudslides
 "My landlord told me to watch out for mudslides because of all the rain we've
been having," you tell him. "He says they can bury a car."

"True enough about the rain, but that landlord of yours was pulling your leg
about the mudslides," he tells you. "Just take a look around lady. No hills. Should
seem pretty obvious that you ain't gonna get a mudslide without any hill for it to
slide down on.

> t landlord
"Sounds like you know my landlord pretty well. Anything I need to know about
him?" you ask.

"I heard you was renting a cottage from Harkan," he replies. "He's a fair man, but
he'll work a joke on you quick as a wink, so keep your brain going when you're
around him."

There are a few things to notice about this example conversation:

• The conversation was initiated by the reader/player with the talk to <NPC name>
command. The alternate command tt <NPC name> could have been used as well.

• The Conversation extension responds to the command with an extended header for a list of the
topics currently available for discussion. It is important to note that the header presents the
topics as if it is the protagonist that thinks of what he or she wishes to talk about as opposed to

the NPC listing what it can talk about. As a consequence, you must be sure that your topic
header text is in keeping with this approach. The examples that appear later in this guide show
one way to do this.

• The reader/player responds to the topic listing by indicating which topic he or she wishes to talk
about with the T <topic> command.

• If you use an actor instance as a topic in your game, the Conversation extension will show the
name of that actor as the first entry in the topic list. It does things this way because it is quite
common for the protagonist to want to ask an actor to talk about himself or herself prior to
talking about other topics, so it is logical for the name of the actor to be the first topic on the
list.

• You can have one topic introduce another topic to create a branch on the conversation tree. In
this example, the mudslides topic introduces the landlord as a new topic that was not on
the list in the beginning of the conversation. This new branch could have lead to a series of new
topics, and any of these new topics could have branched. Thus, you can create complex
conversation trees capable of modeling a real-world conversation.

This Quick Start Guide shows you how to program a mini game that will replicate the example
transcript shown here. The QuickStrtGame.alan file contains the complete source code for this
example.

If you want to see a larger example that demonstrates everything the Conversation extension is capable
of, look at the source code and the comments in the The_Interview.alan file.

Installing the Conversation extension
Installing the Conversation extension is very simple:

1. Place a copy of verbs.i from the Standard Library in your project directory.

2. Delete the verb definitions for talk, talk_to, and talk_to_a from verbs.i.

3. Place a copy of Conversation.i into your project directory.

4. Create the main Alan file (game1.alan for example) for your project and put Import statements
for both these files into it:

import 'conversation.i'.
import 'verbs.i'.

5. Add import statements for the rest of the standard library:

Import 'classes.i'.
Import 'locations.i'.
Import 'messages.i'.

Creating a starting location
Since this example focuses on the NPC and the conversation, the code for the starting location is fairly
minimal:
The field isa location

Name Farmland
Description

"This lush, rich looking farmland stretches out to the horizon. There is a fence
running along the edge of the field in front of you."

End the.

The fence isa scenery at field
Name fence
Description ""
Verb examine does only

"It is a waist-high rail fence. It's wooden rails are painted white."
End verb.

End the.

Start At field.

Creating an NPC for the conversation
Once you have a location, you can create an NPC that the protagonist can talk to. The code for our
Geezer NPC in the example transcript looks like this:
The Geezer Isa male at field

Name Geezer Name old man Name old

Description
"An old man is standing on the other side of the fence. He seems to be waiting for
you to talk to him."

Verb examine
Does Only
"The old man is dressed in overalls. His weather-hardened face tells its own story, a
story of a man who has devoted his life to nurturing the soil and working the land. "

End Verb examine.

Has topics_header1
" ""Hi there old-timer!"" you tell the old man. ""The name's Janet. I just moved into
town and they say you're the man to talk to about the weather in these parts.""
$p""Pleased to meet you, Janet,"" he replies. ""You can call me Geezer. The weather
around here can be a tad fickle, but I reckon I know her better than most folks.
What do you want to know?"" ".

Has topics_header2
" ""I'd like to talk to you again Geezer.""
$p""What's on your mind?"" he replies.".

Has unknown_topic_header
"After a bit of thought, you find that all you really want to talk
to Geezer about is:".

End The.

As you can see, the Conversation extension has added three new attributes to the actor class that you
have to provide values for:

topics_header1

When you talk to an NPC for the first time in a game, the Conversation extension uses the text in
topics_header1 as a header for the list of currently available topics. In the code example above,
the text takes the approach of having the protagonist introduce herself to the old man as way to open
the conversation. You are free to do it otherwise in your game.

topics_header 2

After the first time you talk to and NPC, the Conversation extension uses the text in topics_header2 as
a header for the list of currently available topics.

If you don't wish to make a distinction between the first and subsequent headers, you make set both
values to the same text. Also you may change the value for topics_header2 at any time during the
game and the Conversation extension will display your new header from that time onward.

unknown_topic_header

It is possible for the reader/player to refer to any object in the game world with the T command, even if
that object does not appear on the list of currently available topics. When that situation arises, it will
use whatever text value you have assigned to the unknown_topic_header attribute in the NPC
that the reader/player is talking to. Since each NPC has his or her own unique header, this value can
help you give each actor a different personality.

Creating topics for the conversation
Now that we have a starting location for the game, and we have placed an NPC in that location, it is
time to create the topics that the NPC can discuss with the reader/player.

Using an actor as a topic

If you refer back to the example transcript that appeared in the Introduction of this guide, you will
notice that the Conversation extension provided a list of topics that the Geezer can talk about when the
reader/player initiated the conversation:

-- (topics) –
 Geezer
 mudslides

The first topic on this list is Geezer, indicating that Geezer can talk to the reader/player about himself.
What we did was to take advantage of the fact that the Conversation extension allows us to use any
thing, be it actor or object, as a topic in a conversation.

To implement this capability, the Conversation extension added the talkers attribute to every thing
in the game. In your code, if you include the ID of an actor in the talkers attribute of a thing, the
Conversation extension will display the name of that thing in the list of available topics for that actor.
Conversely, if you remove an ID from the talkers attribute of a thing, the name of that thing will
disappear from the topic list for the actor whose ID you removed.

So, to get Geezer's name to appear as a topic on the topics list when the reader/player initiates a
conversation, we added a line of code immediately after the mandatory START AT clause:

Start At field.
Include Geezer in talkers of Geezer.

But what does Geezer have to say about himself? At the moment nothing, but that's easy enough to fix.

Adding text to a topic

Since you can have more than one NPC in your game that can talk about any given topic, it stands to
reason that each topic object must somehow store reply text in blocks, with each block being tied to a
specific NPC. The Conversation extension uses Alan's capability to override the default action of a verb
to do just that.

Here is the code (see highlighted area below) that we added to the Geezer object that contains an
override for the T verb that stores the text for Geezer's reply:

The Geezer Isa male at field
Name Geezer Name old man Name old

Description
"An old man is standing on the other side of the fence. He seems to be
waiting for you to talk to him."

Has topics_header1
" ""Hi there old-timer!"" you tell the old man. ""The name's Janet. I just
moved into town and they say you're the man to talk to about the weather in
these parts.""
$p""Pleased to meet you, Janet,"" he replies. ""You can call me Geezer. The
weather around here can be a tad fickle, but I reckon I know her better than
most folks. What do you want to know?"" ".

Has topics_header2
" ""I'd like to talk to you again Geezer.""
$p""What's on your mind?"" he replies.".

Has unknown_topic_header "After a bit of thought, you find that all you really want
to talk to Geezer about is:".

Verb examine
Does Only

"The old man is dressed in overalls. His weather-hardened face tells
its own story, a story of a man who has devoted his life to nurturing
the soil and working the land. "

End Verb examine.

Verb t does
Depending on listener of hero

= Geezer then
" ""So Geezer, tell me what do you do around here that makes
folks think you're an expert on the weather?""
$pHe gives you a shy smile. ""I'm a good farmer,"" he replies.
""You get to know the weather pretty well when your livelihood
depends on it."" "

End depend.
End verb.

End The.

Creating topics from scratch

So far we've used an actor as a topic, and you can use any existing object in your game for a topic in a
conversation by using this same technique. However, it is frequently necessary to talk about something
that is not already an object in your game.

The mudslides topic in this example is a good example of such an object. An object named mudslides
does not exist as an object in the game world, but the reader/player still has to refer to it in order to
converse about it, so the Conversation extension includes the topic class that allows you to create topics
for use in your conversations. In the source code for this example, an instance of the topic class looks
like this:
The mudslides isa topic

Name mudslides

Has Talkers {Geezer}.
Verb t does

Depending on listener of hero
= Geezer then

" ""My landlord told me to watch out for mudslides because of
all the rain we've been having,"" you tell him. ""He says they
can bury a car.""
$p""True enough about the rain, but that " Style emphasized.
"landlord" Style normal. "of yours was pulling your leg about the mudslides,""
he tells you. ""Just take a look around lady. No hills. Should
seem pretty obvious that you ain't gonna get a mudslide without any hill for it
to slide down on."" "

End depend.
End verb.

End the.

You will notice that we put the ID for Geezer in the Talkers attribute value here in the definition for the
topic. We did this to show an alternate method to initialize a topic that does not use an Include
statement. When you do the initialization in this manner, the topic will appear in the topic list for the
NPC at the start of the game. Of course, you can still use Include and Exclude statements to modify the
Talkers attribute value at anytime later on in the game to include or remove the topic from Geezer's list
of topics.

Creating a branch in the conversation tree

Upon further examination of the mudslides code presented earlier, you will notice that we emphasized
the word "landlord' in the text for Geezer's speech. This step was taken to clue the reader/player that we
have added a new topic to the conversation list to create a branch in the conversation tree. Such cluing
is not strictly required because the reader/player can always use the Topics command to periodically
refresh the list, but it does remove one possible frustration he or she might otherwise have while
playing your game.

To create the new branch you have to first create a landlord topic object:
The landlord isa topic

Name landlord

Verb t does
Depending on listener of hero

= Geezer then
" ""Sounds like you know my landlord pretty well. Anything I need to know about
him?"" you ask.
$p""I heard you was renting the white cottage at the east end of town from
Harkan,"" he replies.
""He's a fair man, but he'll work a joke on you quick as a wink, so keep your
brain going when you're around him."" "

End depend.
End verb.

End the.

Now that you've created the topic object, you add it to Geezer's topic list with an Include statement
inside the T verb override (see the yellow highlight below) as was done in the code example shown
earlier:

The mudslides isa topic
Name mudslides

Has Talkers {Geezer}.
Verb t does

Depending on listener of hero
= Geezer then

" ""My landlord told me to watch out for mudslides because of
all the rain we've been having,"" you tell him. ""He says they
can bury a car.""
$p""True enough about the rain, but that " Style emphasized.
"landlord" Style normal. "of yours was pulling your leg about the mudslides,""
he tells you. ""Just take a look around lady. No hills. Should
seem pretty obvious that you ain't gonna get a mudslide without any hill for it
to slide down on."" "

End depend.
Include Geezer in talkers of landlord.

End verb.
End the.

We put the Include statement inside the T verb override so that the topic will be added to Geezer's topic
list when the reader/player reads Geezer's reply to the mudslides topic. This technique of using
Include/Exclude on the Talkers attributes inside a T verb override allows you to set up the conversation
tree of an actor so that it dynamically grows or shrinks and/or branches during a conversation
depending on which topics the reader/player chooses.

Creating text for multiple NPCs

As mentioned earlier, the text that the reader/player reads for each topic is stored in the various objects
you are using as topic objects. You do this storage by creating blocks of texts within an override for the
T verb in each of the objects, and associating each block of text with a particular NPC so that each
NPC can have a different opinion about a topic.

Although we don't have more than one NPC in the example for this guide, a topic in a game where
multiple NPCs can each talk about his or her mother could look something like this:
The mother isa topic

Name mother Name mom
Has talkers {Geezer, Harkan, Ginny}.
Verb t does

Depending on listener of hero
= Geezer then

" ""Please tell me about your mother,"" you say to the old man.
$p""My mom died several years ago,"" he replies."

= Harkan then
" ""Your mother must be proud of you,"" you tell him.
$p""I am demon spawn and have no mother,"" he snarls."

= Ginny then
" ""How is you mother doing?""
$pGinny shakes her head and looks down at the floor without speaking."

End depend.
End verb.

End the.

The source code for this example
The QuickStrtGame.alan file contains the complete source code for the example used in this Guide.

A custom About command
It is customary to give the reader/player an About command that displays the non-standard IF
commands that are required to play the game. This is one that you can use and modify as you see fit:

Verb 'about'
Does

Style normal.
"TALK TO <name>, TT <name>, and TALK <name> all initiate a conversation with
an NPC and display the list of topics that you can currently talk about.
$pT <topic> displays the NPC's response for a particular topic.
$pFor example:"
"ni> tt jim
$i ""Hey Jim,"" you call out to Jim.

ni ""What?"" he replies.

ni ""How can I catch crabs like you?""

ni ""That's easy,"" he replies. ""What do you want to know first?""

ni$t -- (topics) --
it$t traps
it$t bait

ni$t -- (advice and hints) --
it$t Advice

ni> t bait
it""I always use rotten chicken carcasses."" "

-- Style normal.

"$pAs new topics become available over the course of a conversation, they
will be "
Style alert.
"emphasized"
Style normal.
"in the current text with bold, or italics, or in some other manner,
depending on your interpreter.
$pNOTE: Since interpreters do not respond the same way to text formatting,
this demo game uses ALL CAPS to emphasize the new topics just to play it
safe.
$pTo see the new topic, just use
the T <topic> command with the emphasized text as the topic.

$pYou can type either 't' or 'topics' or 't topics' when you need to remind
yourself what topics your current listener can respond to, including the new
topics that become available over the course of a conversation.

$pNOTE: The ASK/TELL conversation system is NOT used in this game."
End verb.

Where to go next
The comments in Conversation.i are a good place to go next. It might be a good idea to read through
them to see all that the extension provides before you begin using it. Also, you can look through the
source code in The_Interview.alan to see examples of how to code everything the Conversation
extension can do. Also, you can compile The_Interview.alan to play a demonstration game that
incorporates the full range of the Conversation extension's capabilities.

	Introduction
	Installing the Conversation extension
	Creating a starting location
	Creating an NPC for the conversation
	topics_header1
	topics_header2
	unknown_topic_header

	Creating topics for the conversation
	Using an actor as a topic
	Adding text to a topic
	Creating topics from scratch
	Creating a branch in the conversation tree
	Creating text for multiple NPCs

	The source code for this example
	A custom About command
	Where to go next

