

The ALAN Adventure Language

Reference Manual

Version 3.0beta5

Alan Adventure System - Reference Manual

This version of the manual was printed on August 09, 2018

- ii -

Alan Adventure System - Reference Manual

Table of Contents

1 INTRODUCTION...13
1.1 Programmer’s Pitch..14
1.2 To the Reader...14

2 CONCEPTS...17
2.1 What Is An Adventure?..17
2.2 Elements Of Adventures...19
2.3 Alan Fundamentals..20

 What Is A Language?...20
 The Alan Idea..23
 What’s Happening?...23
 The Map..24
 The Things...24
 Other People and Monsters...25
 Acting...26
 The Input...26

2.4 Introduction to the Language..26
 Notation..27
 The Locations...28
 The Objects..30
 The Actors...32
 Inheritance and Object Orientation...33

 Inheritance and Instances..33
 Polymorphism...34
 Every and The..34
 The Pre-defined Classes...34
 Creating Classes and Instances...35
 Specialising and Overriding..36

 Containment , Classes and Transitivity..37
 Containers Containing Containers...37
 Transitivity..37

 The Verb Construct...38

- iii -

Alan Adventure System - Reference Manual

 Checking Things..39
 The Syntax..41
 Text Output Formatting...42

2.5 Strict and Safe..43

3 LANGUAGE REFERENCE..47
 General Rules..47

3.1 An Adventure..48
3.2 Options..49
3.3 Types..51

 Basic, Simple and Compound Types...51
 Instance Type...52
 Event Type...52
 Set Type...52
 Type Compatibility...53
 Type Requirements...54

3.4 Import..54
3.5 Classes..55

 Inheritance..56

3.6 Instances..56
 Entities..58
 Things...58
 Objects...59
 Actors...59

 The Hero...60
 Locations..61
 Literals..62

3.7 Properties...62
 Inheriting Properties...63
 Initial Location...64
 Names...65

 Inheriting Names..67
 Displaying Instances...67

 Pronouns..68

- iv -

Alan Adventure System - Reference Manual

 Attributes..69
 Boolean Attributes..70
 Numeric and String Attributes...70
 Event Attributes...71
 Reference Attributes..71
 Set Type Attributes...72
 Inheriting Attributes...73

 Initialize..74
 Description..75
 Articles and Forms...78

 Articles ...79
 Form...80
 Printing..80

 Mentioned..80
 Container Properties..81

 Limits..83
 Header and Else...84
 Extract..85

 Verbs..86
 Entered...86
 Exits..87
 Scripts..89

 Steps..90
3.8 Additions..91
3.9 Syntax Definitions..91

 Indicators..93
 Parameter Restrictions...95
 Syntax Synonyms..96
 Default Syntax..97
 Scope..98

3.10 Verbs...99
 Verbs in Locations...100
 Verb Checks...100
 Does-clause..102
 Verb Alternatives...103
 Verb Qualification...104

- v -

Alan Adventure System - Reference Manual

 Verb Execution..104
 Controlling Execution with Qualifiers...106

3.11 Events..108
3.12 Rules...108
3.13 Synonyms..110
3.14 Messages...111

 Message parameters..113
3.15 Prompt Section..113
3.16 Start Section..114
3.17 Statements...115

 Output Statements..115
 String Statement..116
 Style Statement..117
 Describe Statement...118
 Say Statement..118
 List Statement..119

 Multi-media Statements...120
 Show Statement..120
 Play Statement...121

 Manipulation Statements...121
 Locate Statement..121
 Empty Statement..122
 Strip Statement...123

 Event Statements...123
 Schedule Statement..123
 Cancel Statement...124

 Assignment Statements..125
 Make Statement...125
 Increase and Decrease Statements...125
 Set Statement..126
 Include Statement..127
 Exclude Statement...127

 Conditional Statements..127

- vi -

Alan Adventure System - Reference Manual

 If Statement..128
 Depending On Statement..129

 Actor Statements..130
 Use Statement...130
 Stop Statement..130

 Repetition Statements...131
 Special Statements...132

 Quit Statement...132
 Look Statement..132
 Save and Restore Statements...133
 Score Statement...133
 Visits Statement...134
 Transcript Statement...135

3.18 WHERE Specifications..136
3.19 WHAT Specifications...138
3.20 Expressions...139

 Types of Expressions..139
 Literal Values..139
 Attribute References..140

 Location Of...141
 Random Values...141
 Logical Expressions..142
 Class Expressions..143
 Binary Operators..144
 Relational and Equality Operators..144
 String Containment...145
 Current Entities...145
 This Instance...146
 The Whereabouts of an Entity..146
 Aggregates...148

3.21 Filters...149

4 LEXICAL DEFINITIONS...151
4.1 Comments..151

- vii -

Alan Adventure System - Reference Manual

4.2 Words, Identifiers and Names...151
4.3 Numbers..153
4.4 Strings...154
4.5 Filenames...155

5 RUNNING AN ADVENTURE.......................................157
5.1 A Turn of Events..157
5.2 Player Input..158
5.3 Run-time Contexts...160
5.4 Moving Actors..162
5.5 Undoing..162
5.6 Scripting and Commenting..163

6 HINTS AND TIPS..165
6.1 Use of Attributes...165
6.2 Descriptions..168
6.3 Common Verbs..169
6.4 Distant Events..170
6.5 Doors..170
6.6 Questions and Answers..171
6.7 Actors...172
6.8 Vehicles..174
6.9 Floating Objects...176

 Body Parts..176
 Outdoors and Indoors..178
 Nested Locations as a Solution...179

6.10 Darkness and Light Sources...179
6.11 Distant & Imaginary Objects..181

- viii -

Alan Adventure System - Reference Manual

 A Mountain...181
 The Melody...183

6.12 Using Events as Functions..183
6.13 Structure..184
6.14 Debugging...184

 Command Logs and Game Transcripts...185
 Interpreter and Instruction Trace...185
 Debug mode...185
 Using the Debugger..186

7 ADVENTURE CONSTRUCTION.................................195
7.1 Getting an Idea...195
7.2 Elaborating the Story..196
7.3 Implementing it..196
7.4 Polishing the Adventure...197
7.5 Beta Testing..198

Appendix A: How To Use The System...200

Appendix B: A Sample Interaction...205

Appendix C: Run-time Messages..208
 Player Errors...216
 Author Errors...216
 Implementor Errors..218

Appendix D: Language Grammar...219

Appendix E: Predefined player words..222
 English..222
 Swedish...222
 German...222

Appendix F: Compiler Messages..223

- ix -

Alan Adventure System - Reference Manual

Appendix G: Localization...235

Appendix H: Portability of Games...237

Appendix I: Copying Conditions..238
 Preamble...239
 Definitions...239
 Permission for Use and Modification Without Distribution..240
 Permissions for Redistribution of the Standard Version...240
 Distribution of Modified Versions of the Package as Source...241
 Distribution of Compiled Forms of the Standard Version or Modified Versions without the
Source..242
 Aggregating or Linking the Package...242
 Items That are Not Considered Part of a Modified Version..243
 General Provisions...243

- x -

Alan Adventure System - Reference Manual

1 INTRODUCTION

Text adventures or, using a more appropriate term, interactive fiction, is
a form of computer game which has many things in common with
fiction in book form, role-playing games and puzzle-solving. To create a
high quality interactive fiction game, you need to be more of an author
than a programmer.

Alan is a special purpose computer language specifically designed to
make it very easy to create such adventure games requiring only limited
programming skills.

The main principle of the design of the language is simplicity. That is, it
should be very easy to do common things, but it should also be possible
to do more complicated things by constructs that are more complex.
This means that wherever a construct is optional, the system supplies
some sensible default.

The author and a very good friend designed the first crude version of the
Alan language in 1985. During many years of incremental improvement
and use, it has now reached its third major version. This means that the
language has a sound foundation, based on practical use. Therefore,
features have been added as experience have grown, from actual use and
understanding of the most prioritised needs.

In this version modern and novel object orientation features has been
incorporated into the language that allows definition of classes,
instantiation and inheritance of attributes and other features. Do not
worry if you find these terms incomprehensible at this point, Alan is

- 11

Alan Adventure System - Reference Manual

still an easy language to use and by reading this manual, you will
understand how these new features may aid you in your quest for
adventures.

1.1 Programmer’s Pitch

Alan is an application-oriented language. It features constructs that are
natural to an author of Interactive Fiction. Alan is a strictly typed,
compiled, object-oriented language with single inheritance. Classes
inherit properties from their super-classes. The class system allows
polymorphism so that instances of subclasses are valid wherever a
super-class is specified. There are no explicit type declarations, except
for instances of classes; instead, types are automatically inferred from
expressions such as integers, strings or instances of a particular class.

1.2 To the Reader

There are probably four major types of readers of this document:

1.Readers completely new to interactive fiction – read the whole
document from the beginning.

2.Readers familiar with writing Interactive Fiction but new to Alan
– read from section 2.4 onwards.

3.Alan v2 users wanting to upgrade – you should read the separate
document on conversion, then section 2.4 and onwards, with
frequent use of chapter 3 as a reference while doing your
conversion.

4.Alan v3 users looking for detailed answers – use the index, look
up the relevant sections in chapter 3 but also glance through
chapter 2 from section 2.4. Visit http://www.alanif.se for a
collection of examples.

12 -

http://www.alanif.se/

Alan Adventure System - Reference Manual

All readers are encouraged to give feedback on the documentation,
particularly if you could not find the answer to what you were looking
for by using the index, the table of content or skimming through what
you thought might be relevant parts of the documentation. You can find
the authors through the web page http://www.alanif.se, where you also
can enrol in the Alan mailing list, a place for new and seasoned Alan
users alike!

- 13

http://www.alanif.se/

Alan Adventure System - Reference Manual

2 CONCEPTS

This chapter introduces the concepts used in the Alan language. You
might already have a good idea about these things, especially if you are
a seasoned adventure player, and perhaps even author.

But I would suggest that you read through it anyway since it introduces
some important concepts that are specific to how Alan treats them.

2.1 What Is An Adventure?

As long as man has been around there have been stories, fairy tales and
fantasies. In the early days, storytellers told their stories to silent and
astonished audiences. After Gutenberg, the stories were printed and the
readers partook in the fantasies of the author. In our days, passive
viewers are fed from the silver screen or through the tube.

In our time, at last, there has evolved a way for the “audience” to take
part in the story themselves. It started in the forties and fifties and
continued to develop into the games today known as Dungeon and
Dragons, Tunnels and Trolls, etc. Games where a game leader designs
the story, but the players decide (and perform) the actions of the
characters in the story.

These games, of course, have a computerized counterpart.

These games are played interacting with the computer. The program
describes a scene or situation (usually in text, but pictures may also be

- 15

Alan Adventure System - Reference Manual

used), the player decides on some action and gives orders to the
computer to carry out his wishes. Usually there are objects to
manipulate, traps to negotiate and puzzles to solve, the object being to
find the hidden treasures or save the world.

Crowther & Woods started this form of games in the late sixties when
they designed the famous Colossal Cave Adventure, which became
available on many mainframe computer systems. Inspired by this,
Lebling et.al (then at MIT) took a giant step forward in adventuring by
creating the Great Underground Empire and making it available for
venturing Adventurers in the game Dungeon. This game contained a
much more developed story and could handle much more complex
commands.

Later, Dave Lebling & Co started Infocom, a company where they
continued to develop their technique, first with Zork I, II and III (the
first a re-implementation of Dungeon, the others equally successful
sequels). Since then, a host of games has been released (Starcross,
Witness, Enchanter are some of the names that come to mind). Although
the original authors are long scattered, the Infocom games are still
highly appreciated even today.

Other companies have followed Infocom’s example and a handful of
them seem to make a living out of creating adventure games. However,
today most of the works are created by devoted people that do it for the
fun of it, releasing their games as shareware or completely free.

There have been many attempts to use computer graphics to display the
surroundings and objects in adventure games. Some of the more
successful early examples are the Sierra games (notably the Leisure Suit
Larry and the Kings Quest series) which had mouse oriented moves but
also allowed single line text commands, games from ICOM Simulations
(DejaVu and The Uninvited) which were purely graphics games with
mouse and icon interfaces. Other manufacturers have tried to use
(sometimes optional) pictures to accompany the text, for example

16 -

Alan Adventure System - Reference Manual

Magnetic Scrolls games (e.g. the Pawn), which shift the picture au-
tomatically as you move around using the normal directional
commands.

Currently, a community of addicted authors and players of text-based
adventure games are still out there. Visit the vaults of interactive fiction
on the Internet, and you will be surprised by the abundance of modern,
high quality interactive fiction available.

The Alan Adventure Language has been designed to aid construction
primarily of pure text adventures or, in the words of Infocom,
interactive fiction. Some sound and graphics functions are also available
to spice up your game if you so desire.

The main feature of adventures is the interaction between the player and
the game through commands input through the keyboard and
descriptions printed on the screen. In Appendix B you can find such a
sample interaction.

2.2 Elements Of Adventures

The success of all Infocom games can probably be attributed to three
distinctive features. First, they all have a ‘believable’ and consistent
plot, which is flavoured with humour and wittiness. Second, the
descriptions are extensive and give a lot of atmosphere to the game.
Third, the command handler recognizes and understands a large
vocabulary and complex input. Add to this the worlds best graphics
device (the human brain) and you are unbeatable!

Looking at adventures in more detail, we can see some common
features. There is always the world or universe (called the map) where
the adventure is taking place. Although you can move around quite
freely there are usually some problems getting into certain parts of the
world (e.g. locked doors, no air to breathe or even finding the entrance).

- 17

Alan Adventure System - Reference Manual

The size of the map ranges from hundreds of locations to just two or
three, or even a single location.

Then, there are the objects in the game. These range from your tools,
like lamps and shovels, to immaterial things like a hole in the ground, in
short, anything you can manipulate. Ideally, everything that is
mentioned in a description should be an object, but this is normally
impossible because of storage limits (and perhaps the stamina of the
games designer!).

Most objects have uses. You can easily guess how to use a key, but
what about the velvet pillow? Red herring objects are also common in
adventuring.

The player must be able to express his wishes. Complete understanding
of natural language commands from the player is probably overkill, but
single verb-object input is not sufficient for a good game either. The
player must be able to say things like

> take all except the blue vase

or

> put the ring and the bag in the box

2.3 Alan Fundamentals

Alan is all about adventure games, or interactive fiction. In this manual,
we will use both terms interchangeably since they convey two slightly
different views on the purpose. But the technical platform, the Alan
language and its support system, is the same, works the same and looks
the same, regardless if you are designing a treasure hunt featuring an
elaborate combat and hit point system or if you are competing with Sir
William Shakespeare himself.

18 -

Alan Adventure System - Reference Manual

What Is A Language?

A computer language is usually described as a set of rules for textual
instructions for a computer. The idea is that a computer can follow those
rules and perform the necessary and/or intended actions.

The Alan Adventure Language is a high-level computer language
designed to make it easy to create text adventures. This means that the
language have been designed so that the textual instructions are
relatively easy to read and write if you understand the mechanisms that
adventures are made from. In addition, it requires only for minimal
additional instructions to make those mechanisms work.

Compared to programming in a typical programming language, the Alan
system handles most of the tiresome tasks and supplies reasonable
defaults so that you can concentrate on the plot, the puzzles, the objects
and the map. This makes Alan a true high-level computer language.

The Alan system consists of two computer programs, one of which
analyses an input following (or at least intended to follow) the Alan
language. This program is called the compiler and the analysis ensures
that the input (the game description, in fact) makes sense. The compiler
also, at the same time, converts the input into something more compact,
the game file. This game file can be transferred and used without the
compiler. Instead, to run an adventure the interpreter is needed. The
interpreter is another program that reads the information in the game
file, communicates with the player of the game (or reader of the work, if
you like) and interprets all the complex mechanisms in your game logic
so that it gives the player the illusion of the activities and events that
you have designed.

- 19

Alan Adventure System - Reference Manual

To create works of interactive fiction using Alan, you also need a
program with which to construct your Alan source code, a standard text
editor, like Notepad or similar programs. However, you cannot use a
word processor, like Microsoft Word, since the files created with those
usually contains formatting information that the Alan compiler don’t
understand.

There are also special editors, or additions to standard editors, available,
which supports Alan coding and helps with formatting and even
compiling and running your game.

You might wonder why the game is not a single executable program.
The answer is simple, compare the game with a Word-document. In
order for the document to be visible, you need the Word-program that
reads the Word-file and displays the content on the screen. As you
probably know, the same program does not run on all computers. For
example, you cannot install Word for Windows on a Macintosh.

In view of this, it might be considered a nice thing that there are
programs for Macintosh that read, display and print Word-documents.

20 -

Figure 1: The principles for and relations between a game description, a
compiler, a game file and the interpreter, or, in other words, authoring and

playing.

Alan game
description

What do
you want to
do next?

compiler interpreter

distribution Portable
game file

Alan Adventure System - Reference Manual

This makes the document files portable. Once you have a reading
program on your computer, you can use all similar files on it. This is
also one reason behind the compiler-interpreter design of Alan.

The Alan Idea

The Alan language does not focus on variables, subroutines or other
traditional programming constructs, because Alan is not primarily a
programming language. Instead, Alan takes a descriptive view of the
concepts of adventure authoring. The Alan language contains constructs
that make it possible for you, the author, to describe the various features
of these concepts. By describing for example, how the locations in the
adventure are connected you have described the geography in which the
story will take place. Much of what should be described is in terms of
ordinary text shown to make the player experience the story that you
have designed by reading them.

You will still need to understand how to vary your output depending on
various conditions or information, how the player input controls which
events will happen, how to connect one location to another and how to
store information for later use. In a way this is programming, but in an
unusual sense.

In order to understand the rules of the Alan language, which this manual
is all about, it is necessary to first establish some common ground. As
an author you will have to have the same view as the Alan language has
on some fundamentals of what a work of interactive fiction is all about.

What’s Happening?

The execution of an adventure is primarily driven by the input of player
commands. A command is analysed by the interpreter program
according to the player command syntax allowed by the author and, if
understood, transformed into execution of verbs or movements, which
in turn may trigger other parts in the game as described in the Alan

- 21

Alan Adventure System - Reference Manual

source. After a player turn, other, scripted non-player characters or
actors, can move, controlled by the computer, again according to the
definitions in the source. Scheduled events are then run, and then the
player takes another turn. This is described in more detailed in section
5.1, A Turn of Events on page 161.

The following sections describe a number of the fundamental concepts
that are present in an adventure game and what the Alan view of them
is.

The Map

The scene for the game is a map of a number of connected locations. A
location has a description that is presented to the player when that
location is entered. A location may also have a number of exits stating
in which direction there are exits and to which locations they lead. Alan
places no restrictions on the layout of the map, any topology is allowed.

Note: In Alan, exits are always one-way, and an explicit
declaration of a backward path (if such is desired) must be
made. Although, normally you would probably want them
to be two-way, if they where automatically two-way, it
would be very hard to handle the rare, but important,
cases when you want them to not be.

The Things

Most objects in an adventure are things that in real life would be objects
too, like a knife or a key. In addition, other things that should be
possible to manipulate by the player, e.g. parts of the scenery, must be
declared as an object. For example if you require the player to ‘whistle
the melody’, then the melody must be an Alan object.

22 -

Alan Adventure System - Reference Manual

Objects, like locations, have a description that is presented when they
are encountered during the game.

Every object may also have a set of properties, like edible and movable,
which may be changed during the execution of an Alan program. Most
objects would e.g. probably not be edible so there is also a mechanism
for declaring how these properties should be set by default, as well as
mechanisms to override them, both for a particular object and for groups
of objects.

Some player actions (verbs) have special meaning or effects when
applied to a certain object. These verbs and their special effects are also
declared within the object declaration.

Other People and Monsters

An extra thrill and dimension are additional characters in the game. In
Alan, these are called actors and may have a life of their own. For each
move the player makes, these programmed characters also get a turn to
do their thing. An actor may be a thief running around and stealing your
collected treasures or a dragon guarding the entrance to its lair.

Actors get their behaviour from scripts that step, by step, describes what
is going to happen for each player interaction.

One of the interesting things about playing adventure games with actors
is to figure out how to interact with and influence the other characters.

- 23

Alan Adventure System - Reference Manual

Acting

The player commands action by typing imperative statements. These
statements are analysed and results in execution (“calls”) to verbs. The
effects of these commands must be declared in verbs by the game
author, either in an object (describing the effects of the verb when
applied to an object) or as a general (global) verb that only applies
without object.

The Input

To make it possible for the player to input more complex commands a
means to specify the syntax for a verb is also available. A particular
syntax is connected to a verb and describes how the player must phrase
his input in order to command the triggering of a particular verb. Using
this mechanism, verbs can also be made to operate on literals (strings
and integers) giving the player the possibility to input things like

> write "Merry Christmas, Mr. Lawrence" on the xmas card

2.4 Introduction to the Language

Alan is an adventure language, i.e. a language designed to make it easy
to write adventures. This means that constructs in the Alan language
reflects the various concepts encountered when creating an adventure
plot.

A common step after having come up with a plot for your adventure is
to draw a map of the world where the adventure is taking place. For this
purpose, we use Locations.

The next step is to introduce tools, weapons and other objects possible
to manipulate. These are the Objects.

24 -

Alan Adventure System - Reference Manual

Then the player will need words to command action. The Alan language
construct to supply these with is the Verb. Using the Syntax construct,
you can also define more complex player input.

Additionally, you may also want other characters and creatures in your
adventure. For this the Actor class is provided.

Notation

In this document, there are some typographical clues. Example Alan
source code is typeset in separate sections with a mono-spaced font:

This is an example of some source code.

You will also encounter sample game-play which will be formatted
using a surrounding border (like paper...) thus:

Grandma's House
You are outside your grandma's house.

Later in the manual, you will find semi-formal definitions, grammar
rules, for how various constructs may be constructed. These sections are
typeset against a coloured background:

The rules for the rules are available in Appendix L on page
226.

In running text, words that are keywords or signify an Alan construct is
written in a mono-spaced, bold, font. This helps distinguish the English
word ‘the’ from the Alan keyword ‘The’.

As shown in the last example, Alan keywords are written with the first
letter capitalized. This is simply a convention and has no effect other
than the visual. A keyword can be written Keyword, KEYWORD, keyword,
or even KeYwOrD (if you are keen to show how good you are with a
keyboard…). This manual tries to be consistent with using the first
version (except in grammar rules).

- 25

Alan Adventure System - Reference Manual

Note: And this is a note!

The Locations

The scene for your adventure is a series of “rooms” or, rather, locations.
Locations are connected by exits, leading out of one location into
another. This makes it possible for the hero to travel through the world
of your design, exploring it and solving the puzzles.

What is required if we want to describe a location? Every location must
have an identifier. This is so that you, the designer, may refer to that
location easily, instead of having to remember a magic number for it.

Unless you plan to provide other means for transportation from a
location, you should also describe in which directions there are Exits
and to which locations they lead.

In fact, this is all that is necessary in a location, so lets look at an
example.

The kitchen Isa location
Exit east To hallway.

End The Kitchen.

The hallway Isa location
Exit west To kitchen.

End The hallway.

Start At kitchen.

This is a complete Alan adventure (although very primitive). As you
see, every Alan construct ends with a period (‘.’) and there is a “Start
At” sentence at the end, indicating in which location to put the hero
when the game starts.

Type the above text into a text file, e.g. using a notepad program. Run
this little Alan source through the Alan compiler and try the adventure

26 -

Alan Adventure System - Reference Manual

(see Appendix A, How To Use The System, on page 206 on how to do
this). After starting the adventure, two lines will be shown on your
screen.

Kitchen
>

The first line contains “Kitchen”, the name of the initial location, and
the second a “>”, which is the default prompt for the player to input a
command. Now try typing “east” and press the return/enter key. The
word “Hallway” and the prompt will appear. Typing “west” will take
you back to “Kitchen” again. (Use Ctrl-C to exit the game if you are
running it in a console window.)

The identifier for a location is automatically used as a description, a
heading, shown when that room is entered. And the words listed in the
Exit-parts are translated into directional commands the player can use
in his input.

You should remember that exits are strictly one-way. An Exit from one
location to another does not automatically imply the opposite path.
Thus, you must explicitly declare the path back, in the definition of the
other location.

However, just the name of the location is not much of a description. So
in order to provide the “purple prose” descriptions often found in many
adventures there is an optional Description-clause that you can use.
Let us describe the Hallway.

The hallway Isa location
Description

"In front of you is a long hallway. In one end
is the front door, in the other a doorway. From
the smell of things the doorway leads to the
Kitchen."

Exit west To kitchen.
End The hallway.

We introduce another feature in this example, namely the text enclosed
in double quotation marks (") which is called a String or, when used on

- 27

Alan Adventure System - Reference Manual

its own like this, an output statement. When executed this string will be
presented to the player and formatted to suit the format of his screen.

Invent a description for the Kitchen, enter it in the Alan source and run
the changed adventure. You notice, of course, that the text in the output
statements is reformatted during output to suit your screen, in order to
make room for as much text as possible. Note also that you do not have
to worry about this at all - in your source file, you may format the text
any way you like, even spanning multiple lines with extra white-space
included.

This type of output statement is just one of the statements in the Alan
Language, and we will see more of them later.

It is also possible to have conditions and statements in the Exit-clauses
of a Location to restrict the access to the next location or to describe
what happens during this movement.

Exit west To kitchen
Check kitchen_door Is open

Else "The door is closed."
Does

"As you enter the kitchen the smell of
something burning is getting stronger."

End Exit west.

The Objects

Another essential feature in Alan are the objects. Like the location, the
object is a means to describe the “physical” world where your adventure
is taking place. Many objects are probably used to provide puzzles, such
as closed doors, keys and so on, but other objects should be promoted to
objects too. A large number of objects that can be examined and
manipulated make a game so much more enjoyable.

Objects, like locations, have identifiers and descriptions, so you might
guess the general structure of an object:

28 -

Alan Adventure System - Reference Manual

The door Isa object At hallway
Is closed.
Description

"The door to the kitchen is a sliding door."
If door Is closed Then

"It is closed."
Else

"It is open."
End If.

End The door.

An object may initially be located at a particular location. This is
indicated by the At-clause, in this case telling us that the door is initially
located in the Hallway. Objects do not have to start at a particular place
in which case they are not present in the game until located, by
executing some code, at some place where the player may lay his hands
on them.

In addition, objects may have attributes indicating the state of certain
properties of the object. In this example with a door, the Is closed part
indicates that the door should have the attribute closed, which initially
is set to TRUE (implying that the door is initially closed). The opposite
would be indicated with a Not, (i.e. Is Not closed).

Alternatively, attributes may be numeric (e.g. Has weight 5) or be of
string type (e.g. Has inscription "Kilroy was here").

We also introduce another Alan statement, the If-statement. The If-
statement allows you to select which statements to execute according to
some condition. In the example, the closed attribute of the door selects
which description to show. There are further variations of expressions
and the If-statement, but we will come back to these later (Expressions
on page 142 and If on page 131).

Instead, let’s look at some other statements in relation to objects.

It must of course be possible to change the value of attributes of an
object. You can do this using the Make statement or the Set statement.

- 29

Alan Adventure System - Reference Manual

For example if the door should be opened (the player having said “open
door”, perhaps) this could be performed by stating

Make door Not closed.

To close it (i.e. setting the closed attribute to TRUE again) you write
Make door closed.

The Make statement changes Boolean (or True/False) attributes. The Set
statement changes numeric or string attributes, for example

Set level Of bottle To 4.

Note: These statements only change attributes. The implications
of such a change must be implemented by writing Alan
code that test these attributes and provides differing text
output to the player. This is what gives the player the
illusion of a door being open or closed for example.

Note: Alan does not understand, or enforce, any semantic in the
identifiers for attributes, they are only identifiers. The
illusion of the effects of differences in the value must be
implemented by varying the output. In addition, Alan does
not understand that an attribute ‘closed’, for a human
would be the opposite of an attribute ‘open’. You should
choose one and stick to it.

Of course, attributes are not only available on objects, but on locations
and other types of entities also.

Another manipulation statement is the Locate statement. This is the
statement to use when moving objects from one location to another.
Opening a lid might cause a previously hidden object to fall to the floor,
something that could be performed by moving the object from limbo to
the current location with:

30 -

Alan Adventure System - Reference Manual

Locate treasure Here.

You could also relocate it to a particular place using the statement:
Locate vase At hallway.

The Actors

Actors can be used to populate the adventure with creatures, beings and
other people. They might be pirates or monsters, but the thing they have
in common is that they move around or at least perform various actions
more or less in the same way as the player does.

An actor may have a Description and attributes like objects and
locations. An actor performs his movements by following scripts, each
having a number of steps. Each step corresponds to one player move.

The charlie_chaplin Isa actor Name charlie chaplin
Script going_out

Step
Locate Actor At outside_house.

Step
Locate Actor At hallway.
Use Script going_out.

End The charlie_chaplin.

Inheritance and Object Orientation

Object orientation is a term that is often used when talking about
programming. The concept is modelled after a natural phenomenon first
described by the Swedish botanist Carl Linnaeus (or Carl von Linné).
He devised a naming system for flowers and plants that was based on
features common between various species and families. The idea is that
a general concept such as a mammal is defined by listing some features
which all mammals share. Specialisations such as sub-species in turn
have other, more specialised, features in common.

In nature, we talk about species and individuals. In object oriented
programming we talk about classes and instances, which are similar.

- 31

Alan Adventure System - Reference Manual

Classes are abstract definitions of what the common features are and
instances are individuals (data objects) having those features.

Inheritance and Instances
Inheritance means that a more general class can be restricted or
specialised into new sub-classes. We say that the specialised class
inherits from the more general. Most object oriented programming
languages allows creating instances from any class, which does not
happen in nature, there are no individuals that are mammals, they are
individuals of some specific species of horse for example.

In programming, we can use this concept to make some things easier for
ourselves. By collecting features that are common to many types of data
objects into classes and sub-classes we can inherit those features. In this
way, we can avoid explicitly, and repeatedly, stating those for every
data object. One small drawback is that we have an implicit declaration
of features, which can make reading a bit more obscure. We need to
look up the parent class (or classes) for complete information about the
object.

Polymorphism
By using inheritance, we can also guarantee the properties of similar, or
related, instances. If every mammal is a vertebrae, we know that all
properties of vertebrates also applies to mammals. We can use this
knowledge to handle commonalities without knowing anything about
the more specialized kinds, or classes. One example of this might be
lockable things like doors and drawers. If they inherit from a common
ancestor 'lockable_things', then we do not need know if it was a door or
a drawer, if we are only interested in the 'locked' property. This
flexibility, know as polymorphism, is possible in programming only
through object orientation and inheritance.

32 -

Alan Adventure System - Reference Manual

Every and The
The Alan language supports object orientation and inheritance with two
constructs:

Every mammal Isa vertebrate …
The house_pet Isa cat …

The Every-construct defines a class and its properties, including
inheriting from another, even more general class. The The-construct
declares an instance, which in this example inherits from the class ‘cat’.
The Isa-construct defines from which class properties are inherited.

The Pre-defined Classes
To make it easy to get started there are eight classes pre-defined in the
Alan language.

They are entity, thing, location, actor, object, literal, string
and integer and have the relationship, inheritance tree, shown in
Figure 2 above.

The semantics of these pre-defined classes are in short:

• Only locations (instances inheriting from location) can be
visited by the hero (the players alter ego)

- 33

Figure 2: Relationships between the pre-defined classes.

thing location

object actor

entity

literal

string integer

Alan Adventure System - Reference Manual

• Only actors may have scripts that they perform

• Only things will be described automatically when encountered
• Literal and its sub-classes cannot be sub-classed. They are used to

handle integers and strings in player input

See the subsections of Instances on page 54 for more detailed
descriptions.

Creating Classes and Instances
In the sections above about locations, objects and actors the examples
show how to create an instance of a class. Those examples show how to
do it from the pre-defined classes. However, it is the identical if you
have defined the class yourself. In general the format is

The <instance identifier> Isa <class identifier> …

To define a class you do much what you would expect:
Every <class identifier> …

After this, declarations of all the properties for that class follow. This
could include inheriting from another class, e.g.

Every door Isa object
End Every.

Every openable_door Isa door
Is open.

End Every.

The kitchen_door Isa openable_door
End The kitchen_door.

In this example, the kitchen_door has the attribute open although it
does not specifically show in the declaration. It is initially set to true as
specified in the declaration of the class openable_door.

Specialising and Overriding
Sub-classing, or specialisation, is usually used to add properties and
thus make the instances of the sub-class more restricted, or specialised.
34 -

Alan Adventure System - Reference Manual

In the example above, openable_doors are specialisations of doors
since they have an attribute that the more general class does not have.

However, a sub-class can also redefine a feature. In the example above a
class named closed_openable_door could be defined as:

Every closed_openable_door Isa openable_door
Is Not open.

End Every.

This makes all instances of the new class have the same attribute but it
is set to false instead. The important thing is that the feature of having
the attribute is common to all ‘openable_door’s. This is called
overriding a property.

This concludes this short description of object orientation and how the
Alan language supports it. In the following descriptions, you just need
to remember that most features can be inherited along the inheritance
tree and be overridden, both during that inheritance and explicitly in the
instance declaration itself.

Containment , Classes and Transitivity

One basic property of instances is that they may contain other instances.
Although conceptually simple there are twists that you should know
about.

Containers Containing Containers
Containers might contain other instances that are in turn containers and
so on, of course. If you want to consider everything inside a container
recursively, you might actually get types of instances you did not
expect.

Consider e.g. a container, cont, that takes a subclass of object,
subobject. Assume there is also an instance of that class, inst, that
also is a container, but takes object.

- 35

Alan Adventure System - Reference Manual

Every subobject Isa object
End Every subobject.

The cont Isa object
 Container Taking subobject.
End The cont.

The inst Isa subobject
 Container Taking object.
End The inst.

When you search, recursively, for instances in the container cont, you
might then get instances that are both of class subobject and object,
e.g. if the inst is inside the cont and in turn contains something,
which would then be of class object.

This might lead to, completely correct, but surprising, error messages
from the compiler indicating that an attribute or other property that you
though existed is not available. Especially surprising is perhaps the case
where the classes are not even decendants of each other. In this case the
contained instances can only be guaranteed to be their common parent,
which might be a quite general class like thing or even entity.

Transitivity
For many scenarios the above works well, and as expected. But for other
cases the notion of transitivity is introduced. Transitivity describes how
e.g. containment should be interpreted.

The scenario above may be described as “transitive containment”
meaning that something is in a container if it is in that container or in
any container it contains, recursively.

There are two other types, namely DIRECT and INDIRECT transitivity.
Direct transitivity actually means no transitivity. If you investigate a
container with direct transitivity you will only get the direct content of
it, not the content of the containers within it.

36 -

Alan Adventure System - Reference Manual

Finally, indirect transitivity means instances indirectly contained by a
container. In a way it is the opposite of direct transitivity, all instances
recursively contained except the directly contained. Here's a rule to
remember:

Tip: Transitive = Direct + Indirect

What this means is that if you use transitive containment you get the
same instances that direct and indirect will give you. And it is usually
the indirect ones that you should look out for.

The Verb Construct

The Verb is the construct that implements the effects of an action
requested by the player. Verbs are associated with a class or an instance.
We will look at the implications of various combinations of these in the
next few sections.

To implement a Verb you need a name for it (which is also the default
word the player should input to request that action). You must also
decide which effects this verb should have under various circumstances.

If we want to implement the Verb open for the door we could use the
following code

Verb open
Does

Make door open.
End Verb open.

A Verb is either a simple command taking no parameters, like ‘look’,
‘save’ or ‘help’, or it involves one or more parameters that the player
can reference. Simple verbs should be declared at the top level, globally,
i.e. outside of any other declaration. Verbs taking parameters, on the
other hand, must be declared within the class or instance, with which it
is associated. For example, if a verb will handle objects it should be

- 37

Alan Adventure System - Reference Manual

declared in the object class. The example above should probably best be
placed in the door object itself.

The kitchen_door Isa object
Verb open

Does
Make kitchen_door open.

End Verb open.
End The kitchen_door.

This defines the effects of applying the open verb to that precise door.
The implementation makes direct references to the kitchen_door, so to
make the verb more general it should be possible to apply to all doors.

Every door Isa object
Verb open

Does
Make This open.

End Verb open.
End Every door.

With this definition it is possible to apply the verb to all doors. Instead
need to reference the object the player mentioned in his command (see
The Syntax on page 33 for an introduction, and Syntax Definitions on
page 78 for a more thorough discussion). In this case, the attribute
closed must also be available for all objects by ensuring that the
attribute exists in to the class. (See Additions on page 90 on how to add
an attribute to a predefined class such as object).

Of course, there are often also conditions that need to be checked before
we can execute this code (perhaps to see if it was possible to open the
object!). Therefore, Verbs may have Checks, as we will see next.

Checking Things
In order to assert that the correct conditions are fulfilled before the body
of a Verb is actually executed the verb may have an optional Check part.

Verb open
Check o Is openable

Else "You can’t open the $o."

38 -

Alan Adventure System - Reference Manual

Does
Make o open.

End Verb open.

This is a more realistic definition of the open Verb than the previous
one. It specifies that before the statements after Does are executed, the
condition after Check must be checked (which, in this case, checks that
the object indicated by the player is really possible to open). If that
condition is TRUE then the requirements are fulfilled and the body of
the Verb (following the Does) can be executed. If this is not the case the
Else-part is executed instead (normally showing some message).

A Check may have multiple conditions as the following code shows:
Verb take

Check o takeable
Else "You can’t take that."

And o Not In hero
Else "You already have it."

Does
Locate o In hero.

End Verb take.

Here we also encounter a variation on the Locate statement - the
capability to place an object inside a container (the inventory).

Note: You can never destroy an instance or remove it from the
game. Instead, you can define a limbo location, i.e. a lo-
cation that is not accessible to the player and may thus be
used as a storage for “destroyed” objects and other things
the player is not supposed to see.

- 39

Alan Adventure System - Reference Manual

The Syntax

Normally a verb acts on one object or actor, henceforth called a
parameter, referenced by the player in a command. This means that the
format of player input normally is something like

> take vase

This form, or syntax, is the default form if you don’t specify anything
else. The default syntax might thus be described as

Syntax
? = ? (parameter)

The question marks are place-holders and should be interpreted as the
name of the verb.

In order to allow different and more complex player input the Syntax
construct is supplied.

The Syntax construct is a way to describe the words and parameters the
player may use in order to execute a particular verb (its global and more
specialised parts). Below is the syntax for put_in, the verb to put
something inside a container.

Syntax
put_in = ‘put’ (obj) ‘in’ (cont).

This syntax defines the put_in verb to be executed when the player has
input the word ‘put’ followed by a reference to an object or actor (a
parameter named obj), followed by the word in followed by a reference
to a second parameter (the container, referred to as cont), as in

> put the green pearl in the black box

This will bind the parameter obj to the instance that represents the
green pearl and the parameter cont will be bound to the black box.

It is also possible to restrict the types of the parameters:

40 -

Alan Adventure System - Reference Manual

Syntax
put_in = ‘put’ (obj) ‘in’ (cont)

Where obj Isa object
Else "You can’t put that into anything."

And cont Isa Container
Else "Nothing fits inside that."

This restricts the parameter obj to being an instance inheriting from the
class object (as opposed to an actor for example) and the parameter
cont to a container (an instance with the container property).

The parameters are used as normal identifiers in the Alan source code.
The parameters can only be referenced if they are defined in the current
context, i.e. they can only be used in the various bodies of the verb for
which the syntax applies (see also Run-time Contexts on page 164 for a
detailed discussion).

The Syntax construct allows for more than one parameter, in order to
make it possible to define more complex player commands. Therefore,
the verb execution order described previously from execution of verbs
in one instance must be generalised to verb bodies in all the parameters.
In the example above, verb bodies in the objects or actors referenced as
obj and cont (the green pearl and the black box) are executed (if the
verb is present in their definitions).

Text Output Formatting

Text output on the screen is caused by what you have written in the
Alan source code. However, since text is coming from various places it
is not easy or even possible, to anticipate the full context of a particular
text.

Therefore, the Alan system takes care of some specific formatting
issues. First, text will always flow neatly inside the window or screen.
Lines will be broken automatically without braking in the middle of
words.

Secondly, a few special cases are also handled automatically:
- 41

Alan Adventure System - Reference Manual

 After a full stop (period, the character ‘.’), an exclamation (‘!’) or a
question mark (‘?’) and in the beginning of paragraphs, including
location headings, the first character will be guaranteed to be upper
case, automatically converted if necessary. This means for example
that you don’t have to consider the case when the name of an object
might be printed as the first thing in a sentence. The name will
automatically be capitalized. For example:

The postmen Isa actor At postoffice …
The postoffice Isa location

Description
Describe postmen.

…

Given the above snippet from a game source, the transcript would
read:
Postoffice
Postmen are working behind the counters.

This would be the case even if the description of the postmen started
with a lower case character.

 Two outputs following each other will automatically be separated by
a space (a blank character). Except for the following case:

If an output is immediately followed by another output starting with
a full stop (period, the character ‘.’), an exclamation, a question
mark or a comma, and it is the only character in that output or it is
followed by a space (blank character), no space will be inserted
before that output. This rule will make sure that the full stop in the
following source is automatically adjacent to the previous text,
without the need to suppress spacing.

“You can’t take” Say p. “.”

42 -

Alan Adventure System - Reference Manual

2.5 Strict and Safe

The Alan language is strict and type safe. This means that the compiler
will attempt to prevent any constructs that might generate a problem for
the player, such as assigning values of one type to attributes of another
type, accessing properties that are not guaranteed to exist on the
instance, and so on.

A simple example is
1. Every animal Isa object
2. Has fur.
3. End Every animal.
4.
5. The house_cat Isa object ...
6. ...
7.
8. If house_cat Has fur Then ...

At line 8 we will get an error saying that the house_cat does not have
the attribute fur.

Now, if that is true, it's a good thing that the compiler caught the error,
otherwise the game might try to access that attribute. And blow up in
the face of the player.

Can you spot the problem? The house_cat is declared as an object,
and not as an animal.

Other examples include trying to use a script for an actor (or actor
subclass) that does not have one, locating something inside something
that is not a container and so on.

A more complicated example is this
1. The cont Isa object
2. Container Taking thing.
3. End The cont.
4.
5. Add To Every object
6. Has someAttribute.
7. End Add.

- 43

Alan Adventure System - Reference Manual

8.
9. The box Isa object
10. Container Taking object.
11. End The.
12. ...
13. For Each f In box Do
14. If f Has someAttribute Then
15. ...

On line 14 we will get an error saying that someAttribute is not
available since the class f can only be guaranteed to be thing.

Is it? Well, the variable f (in the loop) enumerates all things in the box
and since the box takes objects, it is possible that it may contain the
cont. And since that takes things, and the In box is transitive (see xxx),
f may take on any thing that is contained in the cont too.

There are a number of ways to fix this of course:

• change the transitivity of the filter in the loop (Directly In)

• add a class-restricting filter in the loop (Isa object)

• rethink your class hierarchy

The Alan compiler is trying to protect you, and your players, but
sometimes the error can be hard to spot.

44 -

Alan Adventure System - Reference Manual

3 LANGUAGE REFERENCE

This chapter describes the Alan language in detail. Within each section,
grammar rules are used to precisely define allowed formats. A
description of how these rules should be interpreted can be found in
Appendix L on page 226.

General Rules
The Alan language is divided into syntactic components of different
kinds. Each component may be composed of text and/or other
components. A component is terminated by a period or full stop (‘.’).
This indicates that that component is complete. Some components start
with a keyword or initial phrase, such as ‘Description’ or ‘Exit east
To kitchen’. If it is to be followed by further components, such as
statements or output strings, that keyword or phrase should normally
not be followed by a period, but by its continuing components. For
example:

Exit east to Kitchen.

But
Exit east To Kitchen
 Check kitchenDoor Is open
 …
End Exit.

Note that the first is terminated, but the second example is continued
with a check, and not terminated until the End Exit.

- 45

Alan Adventure System - Reference Manual

3.1 An Adventure

An adventure starts with an (optional) set of options (see Options on
page 47) followed by a set of declarations.

adventure = {option} {declaration} start_section

According to the rules it is actually possible to have no declarations at
all (as indicated by the curly braces) but there would be no adventure
without a single location, right? So, in practice you'll need at least one
declaration.

The declarations constitute the major part of the adventure. The
declarations can be declared in any order and repeated freely, and are of
many different possible types.

declaration = import
 | class
 | instance
 | addition
 | syntax
 | verb
 | rule
 | synonyms
 | event
 | messages
 | prompt

The adventure source text must end with a start section.

start_section = ‘START’ where ‘.’ statements

It indicates where the hero is when the game starts but can also be used
to set things up, welcome the player and so on. The start section is
mandatory.

46 -

Alan Adventure System - Reference Manual

Start At bedroom.
Schedule alarm_clock After 2.
"Slowly you come to your senses, your numb limbs
 starting to feel the blood flowing through them..."

You can look up the meaning of the rules “where” and “statement”
elsewhere in this chapter.

3.2 Options

Options define things concerning the overall behaviour of the generated
Alan adventure. As is implied they are optional and are only required if
you need to change the value of an option from its default setting. An
option follows the grammar

option = id ‘.’
 | id id ‘.’
 | id integer ‘.’

The example below illustrate how options may be written, following the
above rules.

Debug.
Language Swedish.
No Pack.
Width 128.

The available options are
Option name Possible values Default value

Language English, Swedish,
German1

English

Width 24-255 802

Length 5-255 24

1 Other non-English languages may be supported in the future depending on demand.

2 Width and Length is overridden by the actual terminal or window size, if available.

- 47

Alan Adventure System - Reference Manual

Pack Boolean (on or off) Off (No Pack)

Debug Boolean (on or off) Off (No Debug)

The Language option specifies the language in which the adventure is
assumed played, and selects different default message texts. Alan is
primarily designed for adventures in the English language, but it is also
possible to write adventures in other languages. To make this possible,
the default messages output by the interpreter may be generated in
different languages. It is completely possible to write in other
languages, but then you must customize all the message texts. See page
214, Appendix section Input Response Messages, for a complete list of
such messages.

The Alan compiler and interpreter will always allow multinational 8-bit
characters as input and the default messages is generated for 8-bit
character sets, internally representing national characters according to
the ISO multinational character set (ISO8859-1) requiring 8 bits. On
output, this is converted to the native character set of the machine
(whenever possible). This means that portability between platforms
should be good even for text containing multi-national (non-ASCII)
characters.

Width specifies how long the lines the interpreter outputs should be
(formatting is automatic!). The Length option will instruct the
interpreter to how many lines to show on the screen without any player
interaction (<More>). These values are only used if the interpreter itself
cannot get the actual values.

The Pack option will cause the compiler to compress the texts to occupy
less space. As a bonus, this also makes it impossible for the player to
cheat by dumping the adventure code file. As a minor drawback, it does
make the execution of the adventure a bit slower (noticeable only on
some very old, smaller, computers).

In order to allow debugging of the generated adventure (see Debugging
on page 189), the debug option must be turned on. This may also be

48 -

Alan Adventure System - Reference Manual

performed using the debug compiler switch (see Compiler Switches, on
page 207).

3.3 Types

The Alan language handles information in bits, values. Each such bit of
information, or data, is of a specific type. Alan is a strictly typed
language, which means that assignment, comparisons and other
statements will require that rules concerning the compatibility between
such values are not broken.

In the Alan language, you cannot explicitly state the type of a value.
Instead, this is inferred from how values are used, e.g. the initial value
of an attribute or the restrictions put on a syntax parameter.

Basic, Simple and Compound Types

The basic types of values available in the Alan language are:

• Integer – e.g. a simple integer constant, a reference to an integer
typed attribute or a numeric expression using any of the
mathematical operators.

• String – e.g. a string constant or a reference to an attribute typed
as a string.

• Boolean (true or false) – comparisons yield Boolean values,
Boolean attributes.

Two other simple types are available:

• Instance – a reference to an instance or an attribute typed as a
reference attribute that refers to an instance.

• Event – a reference to an event or an attribute typed as a reference
attribute that refers to an event.

There is one compound type in the Alan language:

- 49

Alan Adventure System - Reference Manual

• Set – an unordered list of values.

Instance Type

Every time a reference to an instance is made, it can be considered an
expression of instance type. In these cases, the class of the instance also
often matters. E.g. assigning a reference attribute can only be made if
the new value refers to an instance that belongs to the same class or a
subclass of the initial value of that attribute.

Some types of expressions return a value referring to an a class or
instance in the Alan source. Examples include an identifier bound to a
parameter allowing instances and a reference attribute.

Event Type

Event is a set of statements that can be scheduled to execute with a
specified delay. Each reference to an identifier of an Event is of course
of the Event type. Events can be referenced by attributes and any
reference to such an attribute is of Event type.

Expressions of Event type can be used in Schedule and Cancel
statements.

Set Type

A Set is a collection of values that may be referenced as a single value,
but also investigate, added to and removed from. An example might be
a set of cards in a dealt hand, the set of spells that the hero have learned,
or the set of numbers guessed so far.

The order of elements in the set is not specified. Each member can only
occur once in the same set, but a member can occur in multiple sets.
You could for example include one set of numbers (integers) in one set

50 -

Alan Adventure System - Reference Manual

and another set of numbers in another set. It is then possible to
investigate the sets and remove all members that are members in both.

The Set type is a compound type since it is not complete without a
member type. You can only include members in a set if the type
compatibility rules allow it. A Set may include members that are
instances or integers.

If the Set includes instances, the subclass compatibility rule applies. All
members in the set must inherit from the same class. See the section on
type compatibility below.

Note: The fact that an instance is in a Set does not affect the
instance. In fact, there is no way to find out in which Sets,
if any, a particular instance is included. In particular, it
does not affect the instances location.

Type Compatibility

Assignment and comparisons between values requires the values to be
compatible. The three basic types (integer, string and Boolean) are only
compatible with themselves.

Values of the Instance type can be compared without restriction, except
that there is no notion of lesser or equal, so only equality can be tested.
Assignment can be made if the new value is of the same class, or of a
subclass, as the attribute or variable that receives the value. This class is
normally inferred from the initial value of the declaration.

For example, a reference attribute (an attribute referencing an instance)
is inferred to be restricted to instances of the class of its initial value.
Any subsequent change of the attribute (setting it to refer to another
instance) requires that the new instance be of the same class or a
subclass thereof.

- 51

Alan Adventure System - Reference Manual

These rules ensure that attribute references and other properties are
always retained during the execution of the whole game. Thus, it will
never cause a run-time error on the player.

Type Requirements

Some statements require their arguments to be of a specific type. This is
enforced by the compiler. The compatibility rules apply here also, given
that the required type is given by the statement itself.

Examples include the conditional If statement that requires a Boolean
value (or expression) to test and the Use statement, which requires
references to instances that are subclasses of the predefined class ‘actor’.

3.4 Import

The source text for a large adventure might become entangled and
complex. A way to break up a large text is to divide it into separate files.
Each such file can then be imported into the main source using the
import statement.

import = ‘import’ quoted_identifier ‘.’

The quoted identifier is the name of the file to import, see File on page
159. The import may be placed anywhere in a file where a declaration
can occur, and the effect will be the same as if the contents of the named
file had been inserted at that position in the file. Imports may be nested,
so an imported file may in turn import more files, without limits.

An imported file is searched for first in the current directory and then in
any of the directories indicated using the import switch as described in

52 -

Alan Adventure System - Reference Manual

Compiler Switches on page 207, this search is performed in the same
order as the import switches occurred on the command line.

The import statement is the way to use the standard library (or a library
of your own design). Place the library files in a directory where the
compiler will find them, either in the same directory as your other
source files or somewhere else (see Appendix section A.2 Compiler
Switches on page 207 on how to make the compiler look in more folders
than the one the main source file is in). In your source you would refer
to the main file of such a library by

import 'library.i'.

Another use is for dividing your own source into multiple files to make
them easier to handle:

import 'harbor.i'.
import 'city.i'.
import 'desert.i'.

import 'actors.i'.

Start At city.

3.5 Classes

class = ‘EVERY’ id
 [inheritance]
 {property}
 ‘END’ ‘EVERY’ [id] [‘.’]

Classes are definitions of templates of instances. That means that a class
declaration only describes instances, and does not add anything to your
game in itself. Instead, you have to create an instance of the class to
make it available in the game (see Instances below).

- 53

Alan Adventure System - Reference Manual

The id is the identifier used by the author to refer to this class
throughout the source code, e.g. when referring to it in the inheritance
clause of other classes and instances.

The properties are described in Properties on page 61.

Inheritance

Every instance must inherit from a class (see Inheritance and Object
Orientation on page 31). Furthermore, user-defined classes must also
inherit from other classes. A class or an instance inheriting from a class
will get all properties of that class. All properties explicitly declared in a
class or instance inheriting from another class will extend, override or
complement those properties as specified in the original, parent, class.
This way, you can easily create new classes by extending existing ones.

You specify which class another class or an instance inherits from using
a clause following the grammar:

inheritance = ‘ISA’ id [‘.’]

For example
The door Isa object …

and
Every coin Isa treasure …

3.6 Instances

The most important part of an Alan game source is probably the
declarations of instances. Instances are the objects, locations, actors and
other things that fill your game universe. The player traverses and
interacts with these in his quest to negotiating your game.

54 -

Alan Adventure System - Reference Manual

instance = ‘THE’ id
[inheritance]
{property}

 ‘END’ ‘THE’ [id] [‘.’]

Every instance must inherit from a class (see Inherit above) keeping all
properties of that class. Each inherited property can be amended or
overridden by specifying it in the declaration of the instance, and new
attributes, exits and scripts can be added in the same way as in class
declaration.

Exactly the same rules for declaring properties apply to instances. The
only difference is that an instance will actually show up in the game
when it is run. Remember also that properties declared in an instance are
not common to any other instances (unless the declaration overrode the
value of a class property).

Instances inheriting, directly or indirectly, from the predefined classes
thing, entity, object, location, actor and literal, are subject to
special semantics and restrictions.

Here are two examples of instance declarations following the rules
above:

The red_ball
 Isa object
 At bedroom
 Name red ball
 Is hidden.
 Description
 If This Is Not hidden Then
 "An ordinary ball is laying under the bed."
 End If.
 Verb roll
 Does
 "You roll the ball a bit. Nothing exciting happens."
 End Verb.
End The red_ball.

The mr_brown

- 55

Alan Adventure System - Reference Manual

 Isa actor
 Name Mr Brown
 Article "".
 Pronoun him.
 Is working.
 Description "Mr. Brown is here, working at his desk."
End The mr_brown.

In these examples the source lines between The and End The all declare
various properties that we will learn more about in section 3.7
Properties on page 61. The rest of the lines are fairly easy to match up
to the rules of the Alan language as described by the earlier box.

All capitalized words in the examples above are keywords in the Alan
language (see Appendix section D.2 Keywords on page 227 for a
complete list), the rest are author defined words or identifiers (with the
exception of the bold words object and actor, which are identifiers
predefined to be special classes).

Entities

The base class entity represents the lowest denominator of all
instances. All other pre-defined classes inherit from entity. So adding
a property to entity will add it to every instance.

Entities cannot have an initial location, nor can they be located
anywhere. On the other hand, they can be considered to be available
everywhere. They are not described when encountered. They can only
be shown by explicitly executing a Describe statement.

So, if you want an instance to always be available but invisible, create
an instance of entity. It is also possible to create subclasses of entity.
Instances of such classes will follow the same rules.

56 -

Alan Adventure System - Reference Manual

Things

Thing is a pre-defined subclass of entity that adds the property of
having a location. This means that they can have an initial location and
be located to locations and into containers. They will, however not show
up in descriptions or listings, but the player can refer to and interact
with them. They can be described by explicitly executing a Describe
statement.

Creating an instance of thing is a good choice if you want an invisible
instance that should only be available at particular locations, or under
specific circumstances.

Note: Note that a thing can be put in a container, but that
container will not show any visible traces of that thing. It
will be rendered as empty if listed. The thing is however
subject to other effects of being part of a container, such as
the removal rules and selection by a random selection of
items in the container. See Random Values on page 144 for
a description of random selections of container items.

Objects

Objects are instances inheriting directly or indirectly from the
predefined class object. Objects are all the things that can be
manipulated by the player. They can be picked up, examined and
thrown away (if the author has allowed it). In addition to the properties
inherited from thing, any present object will by default, be described
when the player enters a location or otherwise encounters it.

- 57

Alan Adventure System - Reference Manual

Actors

The predefined class actor is intended for providing so called NPC:s,
non-player characters, in your game. Like the player, they can move
around but to do this they have to be scripted, i.e. programmed with
some behaviour using scripts.

An instance inheriting from the actor class will be described when
encountered. Actors can be located, as can any thing, but not be inside
a container. In addition, they can have scripts.

Actors also exhibit special behaviour when they are described, e.g.
when they are encountered. If an actor is executing a script with a
description, (see Script on page 88) this description will be used instead
of the one declared in the description clause.

The kirk Isa actor Name Captain Kirk At control_room
Has health 25.
Container

Header "Kirk is carrying"
Else "Captain Kirk is not carrying anything."

Description
"Your superior, Captain Kirk, is in the room."

End The kirk.

The george Isa actor
Name George Formby
Description

"George Formby is here."
Script cleaning.

Description
"George Formby is here cleaning windows."

Step ...
Script tuning.

Description
"George Formby is tuning his ukelele."

Step...
:

58 -

Alan Adventure System - Reference Manual

The Hero
There is one very special actor, the hero, which represents the player.
This actor is always pre-declared with some basic properties, so you
don't have to declare it. But if necessary, it may be re-declared in the
same way as any other actor.

One situation when this is required is if you need attributes on the hero,
such as “sleepy” or “hungry”. A declaration like the following can then
be used:

The hero Isa actor
 Name me
 Is Not hungry.
 Verb examine Does
 If hero Is hungry Then
 "Examining yourself reveals a poor, hungry soul."
 Else
 "You find nothing but a poor beggar."
 End If.
 End Verb examine.
End The hero.

The hero is predefined with a simple container property taking objects
with no limits. It seems natural to use that as the “inventory” of the
player, the storage for everything the player is picking up and carrying
around. You will probably need to handle carried items in some manner,
and the pre-declared container is one suggestion. You can also redeclare
the container property of the hero so that it suits your needs.

Locations

A location is a declaration of a place (a “room”) in the game that
(normally) can be visited by the player, and have objects lying around,
etc. In fact, the map of your game is a set of interconnected locations. A
location is any instance inheriting directly or indirectly from the
predefined class location. Inheriting from location implies the
following semantic properties:

• only locations can be visited by the player

- 59

Alan Adventure System - Reference Manual

• only locations may have the Entered-clause

• things and locations may be located to locations
• exits can only lead to locations and only locations can have exits

• the start location must be a location
• locations can’t have container properties

• verbs in locations are executed only when the hero is at that
location

When a location is described (for example when entering it) it is
presented with a heading (the location name), the description (in the
description clause) followed by descriptions of any present objects and
actors not already, explicitly, described (using a describe statement) in
the description.

An interesting property of locations is that a location can be located at
another, both initially and during run-time. The result of having such
nested locations is that all things present at the “outer” location are also
present in the inner. This can be used in multiple levels to allow access
to sky, ground and other scenery items available at many locations at
once. It can also be used for grouping locations into sets of similar
locations and for implementing vehicles.

Literals

The classes literal, string and integer cannot be instantiated
explicitly. Instead, you might say that they are implicitly instantiated
when the player inputs a literal. For example

> turn dial to 12

The second parameter (see Syntax Definitions on page 91) in this player
command is the integer 12. This parameter is automatically considered
an instance of the pre-defined class integer.

60 -

Alan Adventure System - Reference Manual

It is possible to add verbs to literal and its sub-classes. This way it is
possible to create verbs that take strings and integers as parameters.

3.7 Properties

An instance or class can be given number of different properties by
declaring them in the declaration of the class or instance.

property = initial_location
 | name
 | pronouns
 | attributes
 | initialization
 | description
 | articles
 | mentioned
 | container_properties
 | verb
 | script
 | entered
 | exit

Attributes, exits, verbs and scripts can be repeated any number of times
in the same declaration. You cannot use the same identifier for more
than one such property, e.g. you cannot declare two attributes with the
same name.

Inheriting Properties

A property can be inherited from the parent of the class or instance. It is
not necessary to repeat the declaration in the inheriting class or instance
if it should retain its inherited value. Each inherited property may be
amended or overridden by specifying it also in the declaration of the
inheriting class or instance according to the following table.

- 61

Alan Adventure System - Reference Manual

Property Inherited as

Initial location Overridden

Name Accumulated, the inherited names are appended at the
end of the list of Name clauses

Pronoun Overridden, each pronoun clause inhibits inheriting
pronouns from the parent class.

Attribute values Overridden, attribute declarations using the same name as
an inherited can give the attribute a different value but
must match the type of the inherited.

Accumulated, you can add further attributes in a class or
instance.

Initialize Accumulated. Inherited initialize clauses are executed
first so that the base classes may do their initialization
first.

Description
check

Accumulated.

Description Overridden.

Articles & Forms Overridden.

Mentioned Overridden. Also overrides names.

Container Overridden, all clauses are overridden.

Verb
declarations

Accumulated. Verb bodies are accumulated for verbs
with the same name as the inherited. Use qualifiers (see
Verb Qualification 105) if you don’t want all of them to
execute.

Scripts Overridden, for same script name.

Entered Accumulated. Entered-clauses in nested locations are
executed from the outside in. Entered-clauses in parent

62 -

Alan Adventure System - Reference Manual

Property Inherited as

classes are executed first. So the first clause to be
executed is the parent of an outer location.

Exits Overridden, for same direction.

The table also show which properties are inherited separately from the
parent. E.g., you can override the description but keep the description
check, or even add another (since they are accumulated). You cannot
override the container limits and keep the header section since the
container property is overridden in its entirety.

In an inheriting class, you can also add new properties. More attributes,
verbs, exits and scripts can be added to those already present through
the inheritance.

The properties available for use in classes, and thus also for instances,
are described in detail in the following sections. In general, all of these
can be mixed freely, however, some semantic restrictions apply as to
when a particular property is or is not legal.

Initial Location

Where an instance will be located when the game starts is set using an
optional Where clause. If no such clause is used the instance will have
no location. An instance without location is not present (in the view of
the player) in the game until it is moved somewhere by a Locate
statement.

initial_location = where

Only the At what and In what forms of the Where construct (see
WHERE Specifications on page 139) are allowed when describing an
initial location of an instance.

- 63

Alan Adventure System - Reference Manual

The chest Isa object At treasury
…

An instance inheriting from location cannot have an initial location
that is In something, but it can be At some other location, creating a
nesting of locations.

Names

By default, the identifier (“author name”) for an instance is also the
name shown to the player, and by which he will be able to refer to it.
Normally you would want to override this with more elaborate and
alternative names. You can do that using the Name clause.

name = ‘NAME’ id {id} [‘.’]

The Name clause consists of a list of identifiers optionally followed by a
full stop.

The identifiers given in the Name clause is used when the instance is
presented to the player and which the player can use to refer to it. For
example

The south_door Isa object At south_of_house
 Name door
 …
The south_of_house Isa location
 Name ‘South of House’
 …

The quoted identifier used in the last example makes the name be one
single text string. See Words, Identifiers and Names on page 155 for an
explanation of this. This works for locations, which a player usually
does not need to refer to, but for things the player should interact with, a
more sophisticated mechanism is available.

The chair3 Isa object
Name little wooden chair

64 -

Alan Adventure System - Reference Manual

In this example, the name is a sequence of words. The semantics of this
declaration is that the word “chair” is a noun and “little” and “wooden”
become adjectives. When the player, in a command, want to refer to the
object with the author name (identifier) chair3, he may use just “chair”
if it is the only accessible object with “chair” as its noun, or he may
distinguish between multiple chairs by also giving one or more
adjectives to be more precise about which chair he meant.

Note: The Name clause hides the author name, so in the example,
the player will not be able to use chair3 to refer to the
instance.

Note: An explicit Mentioned clause will override the names for
presenting the instance.

It is possible to give an instance multiple names by listing a number of
name clauses. Each one will define adjectives and a noun as described
above. The result is that the player can use any of the names to refer to
the object. For example:

The rod Isa object At grate
Name rusty rod
Name dynamite

...

This would allow the player to refer to the object using either ‘rusty rod’
or ‘dynamite’. (Or as a side effect ‘rusty dynamite’.) The first name
clause is used for building a default description, if necessary (see
Description on page 74).

The character case used in any word is retained for output, but player
input will always be matched without considering case. This way you
can e.g. give capitalized names to people giving a correct output.

- 65

Alan Adventure System - Reference Manual

Inheriting Names
Names can of course be inherited. This is done in an additive way so
that any names inherited are appended to the Name clauses in the
declaration. This ensures that the class or instance itself can control the
primary name (the first Name clause). In addition, this has the effect that
an instance inheriting from a class defining a Name will be possible to
refer to also using the inherited name(s). Here is an example with fruits:

Every fruit Isa object Name fruit …
Every apple Isa fruit Name apple …
Every pear Isa fruit Name pear …
The gravensteiner Isa apple …
The macintosh Isa apple …

In this example, both the pear and the apple would be possible to refer
to using the word “fruit”. Both the gravensteiner and the macintosh
would be apples, not only by name, but also by all other properties of
apples.

Displaying Instances
When an instance is to be shown to the player, it must be displayed in
form of text. An instance can be printed in several different ways, it can
be described or only mentioned. A description of an instance is a
complete and usually more elaborate description of it (see Description
on page 74). However, often an instance must be mentioned as a part of
a sentence, or in a list.

Such a mentioning of an instance will involve the articles, the name and
possibly the Mentioned clause.

The basis for this mechanism is the short form, which by default is the
first of the Names. It will, however, be overridden by any existing
Mentioned clause (see Mentioned on page 80).

The short form can be automatically transformed to a description (for
instances that have no Description) by inserting the article (see
Articles and Forms on page 77) and the short form in a default message.

66 -

Alan Adventure System - Reference Manual

In the following example, output of the article is underlined and the
short forms are emphasised, the rest is the default message templates.

There is a little black book, a green pearl and an owl here.

The interpreter also uses this principle when constructing lists of
instances in container content lists (as the result of the execution of an
implicit or explicit List statement, see page 122).

Pronouns

In player input, it is often handy and natural to refer to items using
pronouns, such as “it”, “them” or “her”. Alan provides a means to
define with which pronouns each instance can be associated.

pronouns = ‘PRONOUN’ word { ‘,’ word }

The effect of associating a pronoun with an instance is that the player
can refer to that instance explicitly in one command and then in a
subsequent command use that pronoun to refer to it again. Assume the
player input

> ask the priest about the bible

If the priest has been associated with the pronoun “him” and the bible
with the pronoun “it”, the next command could be

> give it to him

Pronouns are inherited as any other property, but are overridden as soon
as a pronoun clause is present.

Note: The pre-defined class entity defines the pronoun “it” (or
equivalent for other supported languages).

- 67

Alan Adventure System - Reference Manual

Attributes

An attribute is a labelled value that instances have. The declarations of
attributes are placed inside a class definition (in which case it will apply
to all instances of that class or instances of any sub-class of it) or inside
an instance declaration (in which case only this instance will have it,
unless it overrode an already inherited attribute with new values). An
attribute declaration, or a set of declarations, is introduced using one of
the keywords:

is = 'is'
 | 'are'
 | 'has'
 | 'can'

And the actual of an attribute follows the structure:

attribute_declaration = id
 | ‘NOT’ id
 | id integer
 | id string
 | id id
 | id ‘{’ values ‘}’

An attribute can be of Boolean (having truth values), numeric, string,
event, instance or set type. The type of an attribute is automatically
inferred from the type of its initial value.

Combining the keywords with well chosen attribute names can give
natural reading to your attributes:

The rats Are hungry
The cowboy Can shoot
The chest Is heavy
The combination_lock Has numbers {1,2,4,8}

Attributes that you want every instance of a class to have must be
declared in that class. E.g. to declare a Boolean attribute that all

68 -

Alan Adventure System - Reference Manual

instances of the class animal will have in common, the following code
can be used:

Every animal …
 Is

 Not human.
…

The attribute human will now be available in all instances of the class,
without further declarations, and it will be false. If you want the
attribute to have another value in a particular instance, you must declare
it specifically in that instance and give it its desired value, which will be
effective only for that instance. You can override the value in a subclass,
e.g.

Every person Isa animal …
 Is

 human.
…

Boolean Attributes
A Boolean attribute is declared by simply giving the attribute name, or
the name proceeded with the keyword Not (indicating a FALSE initial
value):

thirsty.
Not human.

Numeric and String Attributes
Numeric and string attributes are declared by simply typing the value
after the attribute name:

weight 42.
message "Enter password:".

Note that string valued attributes are mainly intended for saving string
parameters from the player input, like in

> scribble "Kilroy was here" on the wall

- 69

Alan Adventure System - Reference Manual

It is not intended for keeping long strings of descriptions, especially not
as attributes to classes, as they (in the current implementation) require
memory and takes time to initialise when starting the game.

Event Attributes
Attributes can refer to events. Such an attribute is declared by giving the
identifier of an event as its initial value.

Event e1
 "This is e1 running."
 Set e Of l To e2.
End Event.

The l Isa location
 Has e e1.
End The l.

An attribute of the event type can for example be used to dynamically
remember which event is scheduled, so that it can be cancelled.

Reference Attributes
Reference attributes stores references to instances. Such an attribute is
of instance type; the class is determined by the class of the initial
instance that the attribute is referring. You may for example store a
reference to the other side of a door.

The east_door Isa door.
Has otherside west_door.

…

You must initialize a reference attribute with a reference to an instance
belonging to a class having the required properties. Any subsequent
assignment to the attribute will require that the new value is a member
of the same class or a subclass of it. This ensures that operations on
instances referenced by that attribute will always be possible.

Inside a class declaration, reference attributes may be initialized with a
class identifier instead of a reference to an instance. This makes the
attribute an abstract attribute, since it is defined but not initialized. Any

70 -

Alan Adventure System - Reference Manual

instances inheriting from this class must then initialize the attribute,
either explicitly or indirectly (by initializing it in an intermediate class).
E.g.

Every door Isa object …
 Has otherside door.
End Every door.

The east_door Isa door.
Has otherside west_door.

…

Note: If you need to set the initial value to refer to an instance of
a sub-class of the actual class you want to allow, you can
use an instance of the required class in the declaration and
set its correct initial value in the Start or Initialize
sections.

Set Type Attributes
A Set is an unordered set of integers or instance references. Initial
members must be listed in the declaration of the Set. See Set Type on
page 50 for details on the Set type.

The type and class of allowed members is inferred from the values
actually in the initial set. If they are instance references, the common
ancestor of all members is used as the class of the allowed members. An
empty set is only allowed as an initial value if the attribute is an
inherited attribute since in this case, the member class is known from
the inheritance and need not be indicated in the declaration.

You can also initialize a set type attribute with a set consisting only of a
single class identifier. This will create an empty set with instance type
members restricted to that particular class.

- 71

Alan Adventure System - Reference Manual

Note: If you require an initially empty set of another type, e.g.
integer, and you cannot give the member class by
inheriting it, you can initialize the set with a single value
of the correct type and remove that value in the Start or
Initialize sections.

Inheriting Attributes
Attributes can be inherited like any other property. A declaration of an
attribute with the same name as in any of the parents of the instance or
class, will inherit the type of the attribute, you cannot change it in
subsequent declarations. This means that any declaration of a different
initial value than the inherited must follow the rules of type
compatibility for assignment. (See Type Compatibility on page 51.)

This also applies to classes of instances in the reference and set types
attributes. Both these types allow references to instances. The initial
value given at the point where the attribute is introduced determines the
required class of the set members or referenced instances. This is
retained throughout the complete inheritance of that attribute even if a
subsequent initial value would imply a more specialised class. An
example:

Every door Isa object
 Has otherside someDoor.
End Every door.

Every lockable_door Isa door.
 Has otherside someLockableDoor.
End Every lockable_door.

The someDoor Isa door
 Has otherside someLockableDoor.
End The someDoor.

The someLockableDoor Isa lockable_door
 Has otherside someDoor.
End The someLockableDoor.

72 -

Alan Adventure System - Reference Manual

In this example, the reference attribute otherside is introduced in the
class door. Its initial value is referring to the class door. This makes the
attribute refer to doors. In the subclass lockable_door the attribute is
used with another initial value, here it refers to a subclass of door.
Despite this, the attribute in the two door instances will allow reference
to doors, as indicated by the first declaration (in the class door).

As a contrast, the same example can be used with abstract reference
attributes (reference attributes that are defined, but not initialized, in the
class declaration).

Every door Isa object
 Has otherside door.
End Every door.

Every lockable_door Isa door.
 Has otherside lockable_door.
End Every lockable_door.

The someDoor Isa door
 Has otherside someLockableDoor.
End The someDoor.

The someLockableDoor Isa lockable_door
 Has otherside someDoor.
End The someLockableDoor.

Now the class declarations refer to classes instead of instances in their
declaration of the otherside attribute. This changes the semantics so
that the subclass indicated by lockable_door actually makes it illegal
to use a door as the declaration in someLockableDoor does, instead a
lockable_door is required.

Using abstract reference attribute declarations in class declarations
allows you to progressively refine the class of the instances that that
attribute may refer to.

- 73

Alan Adventure System - Reference Manual

Initialize

The attributes of an instance can be initialized using values in the
attribute declaration. This is usually sufficient for many situations. For
more flexibility, the Initialize clause can be used.

initialize = ‘INITIALIZE’ statements

The clause makes it possible to execute arbitrary statements before the
game is started. The statements are executed before the Start clause is
executed. This enables calculation of more complex initial attribute
values to be located within the instance, or class, that requires it. Of
course general statements are also allowed so any prerequisites can be
catered for.

Initialize
 Set first_course of This To Random In first_courses Of menu.
 Set second_course of This To Random In main_courses Of menu.
 Set third_course of This To Random In desserts Of menu.

The current location is set to the start location, and the current actor is
the hero during the execution of all Initialize clauses.

If the Initialize clause is inherited it will accumulate all clauses with
clauses from base classes executing before the clause from the subclass.
This lets the base classes do their initialization before the initialization
of the more specialized, class or instance is performed.

Description

The statements in the Description clause should print a description of
the instance. These statements are executed when the hero encounters
the instance. Depending on from which base class the instance inherits
this can be a location description presented when the hero enters the
location or when executing a Look statement. Other possibilities are
descriptions of objects and actors. See sections 3.6 Instances on page

74 -

Alan Adventure System - Reference Manual

54 for descriptions of what inheriting from the predefined base classes
means.

Note: The description should not change any game state since it
might not always be executed depending on the settings of
the Visits. In particular, the description of a location
should not move the hero; this might lead to a recursive
loop of descriptions. This might instead be managed by the
Entered clause.

See also Special Statements on page 135, concerning the Visits
statement.

The syntax for simple descriptions is:

description = ‘DESCRIPTION’ {statement}

If the Description clause is missing for an instance (and no description
is inherited), the Alan system will supply a default description such as
“There is a round ball here.”. If there is a Description clause but it
contains no statements, the object will be ‘invisible’, i.e. no description
of it will be printed, not even a default one. This can be useful for
objects already described by the location description, or of objects with
particular properties.

Here are some examples of simple description declarations
The south_of_house Isa location

Name ‘South of House’
Is outdoors.
Description

"You are facing the south side of a white
 house. There is no door here, and all the
 windows are barred."

…

- 75

Alan Adventure System - Reference Manual

The door Isa object
Description

"In the north wall there is a large wooden
 door."
If door Is closed Then

"It is closed."
End If.

…

Before executing a description, you can check for various conditions to
be met. A common example is the dark room. If there is no light source
present, the description should not be printed. The syntax for such a
description is

description = ‘DESCRIPTION’ [checks] [does]

You can guard the description with a check in the same form as with
verb bodies (see Verb Checks on page 101 for a detailed description of
checks). Of course, there are no qualifiers possible here. To be able to
separate the checks statement from the actual description statements the
keyword Does is required. This is an example of the checks for a dark
location:

Every dark_location Isa location
Description

Check Sum Of light_source Here > 1
Else “It is pitch black. You are likely

 to be eaten by a grue.”
End Every dark_location.

Note that it does not specify any description statements. This is because
the checks and the actual description are inherited separately, as
described in the table on page 61. The actual descriptions are left for the
instances.

If multiple description checks are available in the inheritance chain, they
are all tested and must be met before any description is attempted. So
the inheritance of description checks is “additive”.

76 -

Alan Adventure System - Reference Manual

If any check fails, the description will not be executed. This particularly
also implies that the default listings and description of present objects
and actors in location instances will not occur either. Note, however,
that any events and actor actions will be shown. See Locations below for
a description of default description mechanism for locations.

If neither a check nor any description statements occur after the
keyword Description this is a description, but it is empty.

Note: You should not put statements that changes game state in
the Description clause. Descriptions can be executed in
various circumstances that the game author has no control
over. Consider Exit statements and the Entered clause
instead.

Articles and Forms

forms = indefinite | definite | negative
definite = ‘DEFINITE’ article_or_form
indefinite = [‘INDEFINITE’] article_or_form
negative = ‘NEGATIVE’ article_or_form
article_or_form = ‘ARTICLE’ {statement}
 | ‘FORM’ {statement}

The optional definite, indefinite and negative articles and forms can be
used to define how an instance is printed in its indefinite, definite and
negative forms. There are two cases for each form, either as an article
prepended to the short display form of the instance (its names or
Mentioned clause), or a complete form replacing the normal name
printing.

Indefinite forms are used in e.g. inventory listings and when presenting
instances that have no Description clause. Definitive forms are usually
used in messages of the type:

- 77

Alan Adventure System - Reference Manual

The door is locked.

The negative forms are used in standard messages of the type:

I can’t see any door here.

Articles and Forms can of course, be inherited.

Note: The predefined base class entity defines the default
definite, indefinite and negative article to be “the”, "a" and
“any” (if using English). You may override this by using an
Add statement.

Articles
Printing the indefinite (or definite or negative) form of an instance
having an indefinite (or definite or negative) article is simply performed
by executing the article statements and then the normal printing of the
instance, usually the first set of names.

For example
The owl Isa object

Indefinite Article "an"
:

This results in output like

There is an owl here.
You are carrying an owl.

An article is not used when the instance is displayed when acting on
multiple objects, as in:

> take everything
(owl) Taken.

78 -

Alan Adventure System - Reference Manual

For instances that should not have any article at all, like ‘some money’,
or ‘mr Andersson’, an Indefinite Article clause containing no
statements must be used:

The money Name some money
Article

:

Instead of

There is a some money here.

This will lead to the expected:

There is some money here.

Form
If an instance has a Definite (Indefinite or Negative) Form, either
through declaration or inheritance, the printing of its definite, indefinite
or negative form will be by executing the corresponding statements
only; no article declaration is involved. In this way, the author gets
complete control over the spelling and inflection of the instance name in
definite, indefinite or negative forms. Some human languages will
probably require more use of the Form form (like Swedish), and some
less (like English). The forms are particularly useful if the natural
language used, have different forms of the noun itself in definite an
indefinite forms. An example is the Nordic languages, which use
definite suffixes instead of articles.

The Article and Form are inherited as one property. That means that an
instance may override its inherited form using either of the forms
regardless of how its parent defined the form.

Printing
You can use various forms of the Say statement (see Say on page 121)
to choose in which form the instance will be presented. In addition, the

- 79

Alan Adventure System - Reference Manual

embedded parameter references allow selection of the form (String
Statement on page 118).

Mentioned

The optional Mentioned clause overrides the name for displaying an
instance in a short form that will be used when the instance is mentioned
e.g. in listings of containers or when the all form of player input is
used. A typical use of the Mentioned clause is to let some internal state
of the instance be reflected in the short form, e.g. if you want the short
form of a box to show if it is open or closed you cannot rely on the
Names since they are static. Instead, the Mentioned clause can print a
different short name depending on an attribute.

mentioned = ‘MENTIONED’ {statement}

For example:
Mentioned

If mirror Is broken Then
"broken"

End If.
"mirror"

...

> take all
(little black book) OK!
(green pearl) OK!
(broken mirror) OK!

Note: A mention clause declared on a class will override the
names of any instance that inherits from it.

80 -

Alan Adventure System - Reference Manual

Container Properties

An instance can also be a container. This is declared by using the Con-
tainer property clause. The grammar is

container_properties = [‘WITH’] [‘OPAQUE’] ‘CONTAINER’
 [‘TAKING’ id]
 [limits]
 [header]
 [empty]
 [extract]

For example
The chest Isa object

With Container
Limits ...
Header ...

Description ...
:

End The chest.

A container is something that can contain instances. By default, the
instances it can contain must be inheriting from the base class object,
but by using the Taking clause, you can allow any instances.

Instances with the container property, “inherits” a special, pre-defined,
Boolean attribute, opaque. This attribute can be manipulated in the
same way as any other attribute. Its current value indicates if the
instances inside the container are visible and accessible or not.

By default, containers expose their content, but by placing the keyword
Opaque in the container declaration, you indicate that this container
declaration will initially prohibit access to the contained instances. A
typical use of this is to prohibit access to contents of closed cases,
drawers and boxes. Once open such containers usually reveal the
content, which then can be accessed. You can implement such
behaviour by modifying the built in opaque attribute. For example:

- 81

Alan Adventure System - Reference Manual

The drawer Isa object
 With Opaque Container
 Header “The drawer contains”
 Verb open
 Does
 Make drawer Not opaque.
 List drawer.
 End Verb.
End The drawer.

Note: If you want to hide the content of a container, you have to
take care so that a List statement is not executed while the
container is opaque since this will reveal the content. You
can check the state of the opaque attribute like any other
Boolean attribute.

Note: The predefined opaque attribute is only available in
instances and classes having the container property.

When an instance with the container property is encountered during
game play, it will be described as usual. If the instance has a default
description the content of the container will be listed if it is not empty
and not opaque.

Limits
The Limits clause of the container property declaration put limitations
on what and how much can be put in the container.

limits = ‘LIMITS’ {limit}
limit = limiting_attribute ‘ELSE’ {statement}
limiting_attribute = attribute_definition
 | ‘COUNT’ integer

If any of these limits are exceeded when trying to locate anything inside
the container, the statements in the corresponding Else-part will be
executed and the players turn aborted. In fact, these checks are

82 -

Alan Adventure System - Reference Manual

performed because of the execution of a Locate statement (usually as a
result of the player issuing a command with the intent of placing
something in a container). This means that the execution of a sequence
of statements can actually be interrupted in the middle by these
limitations.

The specification of an attribute, which must be a numeric attribute on
the class the container takes (by default object), implies that the sum of
this attribute of all objects in the container cannot exceed the value
specified. The special attribute Count can be also be used and indicates
a limitation on the number of instances allowed.

Container
Limits

weight 50 Else "You can not lift that much."
Count 2 Else "You only have two hands!"

Note: The Count limit considers all instances in the container.
This might differ from the number of instances listed e.g.
if the container takes Things (which are not 'visible').

Container properties are inherited in its entirety. Locations can’t have
container properties.

Header and Else

header = ‘HEADER’ {statement}
empty = ‘ELSE’ {statement}

Header is used when the contents of the container is listed. It is intended
to produce something like

"The box contains"

or

- 83

Alan Adventure System - Reference Manual

"You are carrying"

It is followed by a list of instances mentioned. Section Mentioned on
page 80 describes this listing.

The Else-part is used instead of the header if the container is empty.

If Limits or Header is missing, the Alan system supplies the default of
no limits, and the messages output will be equivalent with

Header
 “The <container> contains”
Empty
 “The <container> is empty.”

(<container> is replaced by the actual name of the instance.)

Extract
The Extract clause defines what happens when anything is extracted
from a container. Any Locate statement that moves an instance out of a
container is considered an extraction. The extraction will be subject to
the restrictions enforced by the Extract clause.

extract = ‘EXTRACT’ [check] [does]
 | ‘EXTRACT’ {statement}

The extract clause, including optional Check and Does clauses, allows
prohibiting the extraction of the item from the container depending on
some condition. If the Check is present, it works the same way as for
Verbs (see Verb Checks on page 101). I.e. a Check without a guard
expression will unconditionally prohibit extractions; a Check with an
expression will evaluate that expression and, if false, execute its Else
clause, and then abort the move. The Does clause will be executed if the
optional Check passes, or there was no Check.

84 -

Alan Adventure System - Reference Manual

An Extract clause without a Check, but with a Does-clause, executes
the Does-clause and then allows the extraction to take place. So, in a
way, Checks, if triggered, prevents the extraction, and the Does-clause
amends to it, being an extensions of the normal case, much like the
Check and Does-clauses for Verbs (see section 3.10 Verbs on page 99).
The second form of the clause, with just the statements, is equivalent to
an Extract with only a Does-clause.

An example use of the Extract clause is to prohibit, put restrictions on,
or modify the behaviour when the hero attempts to take things carried
by another actor.

The waiter Isa actor
 At bar.
 Is Not annoyed.
 Description
 "A slow-moving, traditionally dressed waiter is here."
 List waiter.
 If waiter Is annoyed Then
 "He is rather annoyed."
 End If.
 Container
 Header "The waiter is carrying"
 Else "The waiter is empty-handed."
 Extract Does "The waiter is annoyed by your presupposition."

 Make waiter annoyed.
End The waiter.

Verbs

Verbs declared inside an class or instance are inherited in the same way
as other properties. See section 3.10 Verbs on page 99 for a description
on how to declare verbs.

The verbs in a class or instance will only be a candidate for execution if
the instance bound to a parameter is of the corresponding class, or is the
instance. See Verb Execution on page 106 for a detailed explanation.

- 85

Alan Adventure System - Reference Manual

Entered

entered = ‘ENTERED’ {statement}

The Entered clause is only allowed in instances inheriting from the
predefined class location. This clause will be executed whenever any
actor enters the location. Game state changes can be made without
restriction.

However, the Entered clause is primarily intended for setting up the
location in a correct way, not for describing events, actions and states
changes. For this the Description-clause is recommended.

The Entered clause can also be used to restrict the movements of actors
other than the Hero. (The hero's travels are controlled by exit checks as
described in Exits on page 87).

If some of the statements should only apply to a particular actor, it is
possible to test for the Current Actor with a simple If statement.

The actor is located at the location before the clause is executed so
Current Location will be the location having the clause.

Entered clauses are inherited and locations can be nested (see section
Locations). The order of execution is explained by the following table:

Outer Region … Current Location

Base class Outermost  

:   

Leaf class   

Instance   

This means that the first Entered clause to be executed is the clause in
the base class of the outermost location, if any, then moving down the
86 -

Alan Adventure System - Reference Manual

inheritance of the outermost. After that any parent classes for any
intermediate locations are considered in the same way. Finally running
any Entered clauses in the parents of the new location, ending with the
clause in the location itself.

Note: The Entered clause is only executed when the actor is
entering the location. This goes for all actors, not only the
player/hero. The actor will be at the location when the
clause starts to execute.

Note: If it is the Hero that is moving, the Description, including
the normal header containing the location name, of the new
location will be executed directly after the Entered clause.

Exits

To build a traversable world of locations, they must be connected. This
is done using exits. The syntax for an exit declaration is

exit = ‘EXIT' id {‘,' id} ‘TO' id [exit_body] ‘.'
exit_body = [checks] [does] ‘END' ‘EXIT' [id]

An exit has a list of identifiers, all of which are considered directional
words. I.e. when any of those words is input by the player, he will be
located at the location identified as the target of the exit. It is possible to
customize the exit using a Check, that must be satisfied to allow passage
through the exit, and statements (Does) that will be executed when the
player passes through. The checks work as described in Verb Checks on
page 101.

If either of the Check or Does clauses is present, the End Exit is
required.

- 87

Alan Adventure System - Reference Manual

Two interconnected locations might be declared like:
The east_end Isa location Name ‘East End of Hall’

Description
"This is the east end of a vast hall. Far
 away to the west you can see the west
 end."

Exit w To west_end.
End The east_end.

The west_end Isa location Name ‘West End of Hall’
Description

"From this western end of the large hall it
 is almost impossible to discern the
 opposite end to the east."

Exit e To east_end.
End The west_end.

Note: If an exit is declared from one location to another, and you
want there to be an exit in the opposite direction, you have
to define the reverse passage. It is not created
automatically.

Exits are only allowed in classes or instances inheriting from the pre-
defined class location.

Scripts

The Script is the actor’s way of performing things. In a way, it
corresponds to what the hero is ordered to do by the player’s typed-in
commands.

script = ‘SCRIPT' id [‘.'] [description] {step}

Every script has an identifier (the id) to identify it. A script is selected
by the Use statement. When an actor is started following a script, it will
continue with one step after the other, with all the other actors,
including the hero, taking turns.

88 -

Alan Adventure System - Reference Manual

The optional description allowed in the beginning of a script is used
instead of the general description (from the instance declaration)
whenever the actor is executing that particular script. If it is not present,
the general description is used.

Actor george
Name George Formby
Description "George Formby is here."
Script cleaning.

Description
"George Formby is here cleaning windows."

Step ...
Script tuning.

Description
"George Formby is tuning his ukelele."

Step...
:

An actor continues executing its script until

• it reaches the end

• another Use statement is executed for that actor

• the actor is stopped using the Stop statement

• something fails

Note: There are a few things that might fail when an actor
executes. One example is an extract, which means that
something is removed from a container. As container may
define extract checks that action might be prevented. This
means of course that that step is aborted, but also that the
actor is automatically stopped, so no further steps from
the script will be run. The author is responsible for
handling this, e.g. by using rules to ensure that the
condition is detected and handled correctly.

- 89

Alan Adventure System - Reference Manual

Steps
A script is divided into steps. Each step contains statements representing
what the actor will do in what corresponds to one player move. A step
can be defined to be executed immediately next move, to wait a number
of moves before it is executed or even to wait for a special situation
(condition) to arise.

step = ‘STEP’ {statement}
 | ‘STEP’ ‘AFTER’ expression {statement}
 | ‘STEP’ ‘WAIT’ ‘UNTIL’ expression {statement}

For example
Step Wait Until hero Here

Locate waiter Here.
"From the shadows a waiter emerges: $p

’-Bonjour, monsieur’, he says."
Step After ticksLeft Of train

“The train driver enters the train, and after a brief
 moment the train starts to move.”

When an actor has executed the last step of the current script, it will do
nothing more until the next Use statement is executed for this actor (the
actor will not act, but still present at the location where it was). If this is
not what you wanted, you can end each script with a new Use statement.

3.8 Additions

In certain circumstances, you need to add properties to a class after it is
defined. One simple such example is to add attributes to the predefined
classes. To allow this the Add construct is available. It follows the
grammar

90 -

Alan Adventure System - Reference Manual

addition = ‘ADD’ ‘TO’ ‘EVERY’ id
[inheritance]
{property}

 ‘END’ ‘ADD’ [‘TO’] [id] ‘.’

Using this construct, you can add any property to a class without having
access to its declaration. A standard library would make heavy use of
this since it would be structured so that related verbs, their syntax and
synonyms are packaged together. If such a package required particular
attributes in classes, they could be added using the Add construct.

3.9 Syntax Definitions

The syntax construct is used to specify the allowed structure of the input
from the player. Each definition defines the syntax for one Verb. The
effects triggered by the player input are declared using the Verb
construct (see Verbs on page 99).

syntaxes = ‘SYNTAX’ {syntax}

syntax = id ‘=’ {element} syntax_end
element = id
 | ‘(’ id ‘)’ [indicator]

syntax_end = parameter_restrictions
 | ‘.’

The syntax is defined as a number of syntax elements each being either a
player word (a single id) or the name of a parameter (an identifier
enclosed in parenthesis). Parameters may be in any position, including
the first, a syntax with only parameters might be tricky for the
interpreter to match to your intentions, as the complete set of allowed
input then easily becomes ambiguous.

- 91

Alan Adventure System - Reference Manual

Syntax
quit = ‘quit’.
examine = ‘examine’ (obj).
command_north = (act) 'north'.
unlock_with = 'unlock' (l) 'with' (k).

When the player types a command, it is compared to the set of declared
syntaxes. This provides a very flexible way to extend the allowed
command set (see also Player Input on page 162 for details on general
player input).

After the player input has been matched to an allowed syntax, the
parameters are bound to the instances referred to by the player. The
parameter identifiers in the syntax declaration then refer to those
entities. Reference to attributes etc. will be done in the instance referred
by the parameter.

Syntax open = open (obj).
:

If obj Is open Then …
:

In the example above, the parameter, obj, can be used in the declaration
of the open verb and will, at execution time, refer to such a bound
instance. The following table explains which instances in the game a
parameter identifier (l & k, from the unlock_with syntax above) will
actually refer to.

Player input l k

> unlock the door with the key door key

> unlock the bottom drawer with the
rusty knife

bottom
drawer

rusty knife

> unlock the skeleton with the tiny
blue chair

skeleton tiny blue
chair

92 -

Alan Adventure System - Reference Manual

This, of course, provided that there is an instance that will match the
player input, given the adjectives and nouns in the input and in instance
declarations.

It is allowed to define multiple syntaxes for the same identifier (verb).
See section Syntax Synonyms on page 97.

Indicators

Following a parameter, indicators are allowed in syntax declarations.

indicator = ‘*’ | ‘!’

There are two indicators available:

‘*’ This parameter can reference multiple instances (for example by
the player using all or concatenating a number of
parameters using a conjunction like and, see Player Input on
page 162).

‘!’ The parameter (the instance the player refers to in this position in
the syntax) need not be present at the current location. The
default case is that the Alan interpreter requires that a
referenced instance must be present at the same location as
the hero (if the parameter inherits from thing. Note that
entities are always accessible). For cases when the player
must be able to refer to objects and actors that are not
present (e.g. in a verb like talk_about) this omnipotent
indicator can be used to force the interpreter to accept
references to any object or actor.

An example
Syntax

take = ‘take’ (obj)*.
drop = ‘drop’ (obj).

- 93

Alan Adventure System - Reference Manual

This shows the syntax definitions for the verbs take and drop. take
also allows multiple objects. This would make the following inputs
possible

> take everything except the pillow

> drop the vase

Refer to Player Input on page 162 for details on the input of references
to multiple parameters (such as objects). The above declarations would
force the interpreter to reject player input like

> drop the shovel and the bucket

This is because the syntax for the verb drop does not allow multiple
references by not including the multiple-indicator. Another example
using the ‘!’ indicator:

Syntax
talk_about = ‘talk’ ‘to’ (act) ‘about’ (subj)!.
find = ‘find’ (obj)!.

Even if the robber or the key is not present, it will allow the player to
say

> talk to the policeman about the robber

> find the key

For more information on player inputs, refer to Player Input on page
162.

Indicators given in one syntax declaration can affect other syntaxes if
they have identical beginnings, like

> put everything on

and

> put everything on the table

94 -

Alan Adventure System - Reference Manual

Even if only one of the syntax declarations indicate that the first
parameter should allow multiple instances, both syntaxes will actually
allow this because they have the same syntax part before the parameter,
in this case the verb “put”.

Parameter Restrictions

To restrict the types of entities the player may refer to in the place of a
parameter, its class can be defined by using explicit test in the syntax
declaration.

parameter_restrictions = ‘WHERE’ restriction
{‘AND’ restriction}

restriction = id ‘ISA’ restriction_class
‘ELSE’ {statement}

restriction_class = id
 | ‘CONTAINER’

Note: Any predefined or user defined class can be used.
Particularly note that integer and string are pre-defined
classes (see The Pre-defined Classes on page 33).

The following example describes the syntax for a verb that only allows
objects as its parameters (this is however also the default, see below).

Syntax
take = ‘take’ (obj)

Where obj Isa object
Else "You can’t take that."

Each parameter may be restricted to refer only to instances of particular
classes or instances with the container property, or numeric or string
literals. The statements following the Else will be executed if that
restriction is not met, i.e. if the player refers to an instance not in the
specified class or classes. The default restriction is Object, i.e. if no

- 95

Alan Adventure System - Reference Manual

class restriction is supplied for that parameter identifier the player may
only refer to objects at that position in his input.

A more elaborate example of prerequisites for conversation might look
like:

Syntax
talk_about = ‘talk’ ‘to’ (act) ‘about’ (sub)!

Where act Isa actor
Else "Don’t you think talking to a person

 might be better?!?!"
And sub Isa subject

Else
Say act. "does not know anything about

 that."
...

You can combine multiple restrictions, even for the same parameter. If
they refer to the same parameter, they must be successively more
restricted.

For example:
Where obj Isa object Else …

And obj Isa openable_object Else …
And obj Isa door Else …

References to attributes in the source are only allowed if it can be
guaranteed that they exist during run-time. The class restrictions placed
on a parameter are used by the compiler to make this guarantee for code
executed by player input (verb bodies). The same applies for other
semantic restrictions, e.g. you can only use a parameter in a List
statement if it has been restricted to having the container property.

You can use Isa Container to restrict instances to only those entities
that are containers (have the container property).

If there is no restriction for a parameter, it is restricted to the class
object.

96 -

Alan Adventure System - Reference Manual

Syntax Synonyms

It is possible to create multiple syntax declarations for the same verb.
The semantics of this is that any of the input formats will be accepted
and trigger the same verb action. This is a way to define syntactical
synonyms, which are useful to allow multiple forms of input for the
same action, increasing chances that the player will find the correct
form. For example:

Syntax give = give (o) to (p) …
Syntax give = give (p) (o) …

The syntaxes must be compatible in the sense that the parameters must
be named the same. However, the order of the parameters may differ,
they will automatically be mapped as appropriate.

Restrictions are only allowed in the first of such syntax declarations.
These restrictions will be applied regardless of which syntax was used.

Default Syntax

If no Syntax is defined for a Verb at all, this is handled with one of two
default syntaxes according to the two templates below:

Syntax <1> = <1>.
Syntax <1> = <1> (<2>).

The place-holders represents 1) the name of the verb, and 2) the class in
which the verb is first encountered.

The first template is used for verbs that are declared globally, i.e.
outside of any class or instance. Since these are only applied when no
parameters are used, this will effectively work for simple ‘verb-only’
Verbs, such as quit, look, save etc.

Verbs declared in an instance or a class, for which there is no syntax, by
default receives a syntax of the common verb/object type corresponding
to the second template above. This is a reasonable syntax for many

- 97

Alan Adventure System - Reference Manual

cases and restricts the parameters to instances of the class where the
verb was declared. It also implies that the default name for the single
parameter is the same as the name of that class, e.g. object, actor,
thing, etc. (See WHAT Specifications on page 141 for the implications
of this.)

Note: A verb which is declared in a number of classes, or
instances of various heritage, can not be handled with the
default rules, since that would imply that the parameter
should be restricted to multiple classes at the same time.
This case must be handled explicitly.

Note: A verb with no declared syntax, which is declared in a
location, will receive a default syntax restricting the
parameter to the class location, which probably is not
what you wanted.

Scope

If the player inputs a command following a syntax which requires
parameters, the interpreter first determines if the referenced instance is
in scope. This is performed even before the restrictions are executed.

There are a number of ways to get an instance into scope:

 Instances of entity, and of any user defined subclasses thereof, are
always in scope.

 An instance of thing and its subclasses at the current location,
including any nested locations, is in scope.

 An instance of any class inside a container that is in scope is in
scope, unless that container is opaque and closed. See Container
Properties on page 81 for details.

98 -

Alan Adventure System - Reference Manual

 If the syntax indicated a parameter as omni-potent, any instance is in
scope for that parameter position.

If the interpreter finds multiple instances matching the input (the set of
given adjectives and noun), it will try to disambiguate with preference
to instances present, i.e. at the location of the hero. If there still are
multiple candidates after this, the interpreter will print a message and
abort execution of the current command.

When all parameter positions in the syntax have been resolved in this
way, the restrictions are executed.

3.10 Verbs

verb = [‘META‘] ‘VERB’ id {‘,’ id}
 verb_body
 ‘END’ ‘VERB’ [id] ‘.’
verb_body = simple_verb_body
 | {verb_alternative}
simple_verb_body = [check] [does]

A verb declaration specifies what to check and the effects of something
the player does (i.e. commands using a syntactically legal input).

Verb take, get
...

End Verb take.

Verbs can be declared at two different levels, global (outside any other
declaration) or inside a declaration of a class or instance, including
inside an Add construct.

A global declaration will only be considered when the verb is not
applied to any instance (i.e. such as the player referring to an object). In
fact, a global verb cannot include any parameters in their syntax
declaration.

- 99

Alan Adventure System - Reference Manual

A verb declaration inside a class definition or an instance will be
considered if that instance (or an instance inheriting from that class) is
used as a parameter in the input.

The identifiers in the list (‘take’ and ‘get’ in the example above) will be
player words that by default can be used to invoke the verb. But if a
Syntax is declared for the Verb (see Syntax Definitions on page 91), the
identifiers in the list will not be accessible to the player, instead the
sequence of words and parameters specified in the Syntax must be used.

If there is more than one identifier in the list, as in the example above,
this can be viewed as a short hand for declaring identical checks and
bodies for all the verbs in the list. This will create synonymous actions
for different verbs on the level where the verb declaration is. They may
differ in implementation at other places, i.e. if they are declared in the
same verb declaration on one level in an inheritance tree, they can still
have different bodies on another level.

Meta Verbs

Any action from the player usually takes one 'tick' in the default
simulated game time. Sometimes you want a player command to not
take a 'tick', for example administrative commands like 'help', 'score' etc.

You can do this by attaching Meta in front of the verb definition:
Meta Verb 'score'
 Does
 Score.
End Verb.

If your verb has multiple definitions, e.g. for various classes, applying
Meta to any one of them will make the verb a meta verb, meaning that if
the player uses that verb in any context and on any instance, it will take
no tick, even if that particular definition did not have the Meta property
explicitly expressed. A library might decide that 'score' was a meta verb

100 -

Alan Adventure System - Reference Manual

and there is nothing you, as an author, can do to override that short of
editing the library source.

A Meta verb also does not trigger evaluation of rules and events so they
are genuinely “outside” the game and should only be used with verbs
that are not considered part of the players progression inside the game.

Note: The meta verb feature only applies to the built in timing
mechanism known as 'ticks', where every player command
counts as 1 tick. It is possible to implement your own
timing mechanism, in which case the Meta does not help.

Verbs in Locations

A special case is a verb declared in, or inherited by, the location where
the player currently is located. If this verb is used, any checks or body of
that verb will be considered before the verbs in the parameters. An
example might be a location representing walking on a high wire.
Anything dropped at the following location will disappear:

The high_wire Isa location
Verb drop

Does Only
Locate o At limbo. –- Instead of "here".

End Verb.
End The.

Verb Checks

check = unconditional_check
 | check_list
unconditional_check = ‘CHECK’ {statement}
check_list = ‘CHECK’ expression ‘ELSE’ {statement}

{‘AND’ expression ‘ELSE’ {statement}

- 101

Alan Adventure System - Reference Manual

To determine if the action is possible to carry out, the Checks are
executed. Which checks to run, is determined by the class of the
instances bound by the parameters to the verb. All checks in the
inheritance tree are tried by starting at the base class. In this way, the
most general checks are tried first, then more specific.

A typical use of a check is to verify if the parameter has a particular
property:

Verb take
Check obj Is moveable

Else "You can’t take that."
...

End Verb take.

If no expression is specified for a check, that check will always fail, in
effect becoming an unconditional check. This is useful for preventing
certain actions, such as at specific locations, since the checks are always
executed first.

The jumpless Isa Location
Verb jump

Check "You can’t do that here."
End Verb jump.

End The jumpless.

If any check should fail, the executin of the current verb is interrupted
and the statements following the failing check are executed. The user
(player) is then prompted for another command. So in the above
example, the verb “jump” will always result in “You can't do that here.”
at the location “jumpless”.

Note: Checks are intended to take care of any exceptions for
executing the normal case. The normal, or
positive/affirmative, case should be handled by the Does-
clause.

102 -

Alan Adventure System - Reference Manual

With this in mind, Checks are also used when handling the user input
all (see Player Input on page 162 for details on possible player input).
The mechanisms for this involve examining all objects at the current
location and evaluating all checks for the verb. Any objects that do not
pass the checks are not considered for execution. This limits the
handling of all to only executing the verb bodies for objects that are
reasonable, i.e. that will not fail in the Checks.

For example assuming the above definition of the verb take and a
location containing the two objects, ball and box, of which only the
ball is takeable the player input

> take all

would result in all representing only the ball. See Player Input on page
162 for an explanation of the player view of this.

Does-clause

does = [qualifier] {statement}
qualifier = ‘BEFORE’
 | ‘AFTER’
 | ‘ONLY’

If all checks succeed, the execution of the verb will be carried out.
Multiple verb bodies may be involved. The order is by default to first
execute the body of any verb declaration for the current location
(including verb bodies inherited by it). Each parameter is then examined
to find any declarations of that verb for the instance (including inherited
verb bodies). These verb bodies are then executed in the order in which
the parameters occurred in the syntax declaration, for each parameter
starting with the body in the most basic class. By default, all of the
involved verb bodies are executed. This is the most natural order and
covers most cases.

- 103

Alan Adventure System - Reference Manual

In some infrequent situations, another order may be necessary. By using
the qualifiers, Before/After/Only, the author can decide which verb
bodies will be executed and in which order (see Verb Qualification
below for details).

A simple verb example:
Verb take

Check obj Not In inventory
Else "You already have that."

Does
Locate obj In inventory.

End Verb take.

Verb Alternatives

verb_alternatives = ‘WHEN’ id simple_verb_body

When a Verb is declared within an instance declaration, verb
alternatives are allowed. These alternatives are used in conjunction with
the Syntax declaration defined for the verb and allows differentiating
between the instances occurring in different places in the input.

When a player inputs a command, each parameter in the syntax (see
above) is bound to an actual instance or receives the value of a literal,
depending on the specified syntax. To determine the checks to test and
verb bodies to execute the parameters are examined in turn according to
the algorithm described in the section Verb Qualification below. Each
instance may have different verb bodies executed depending on at which
position it occurred (to which parameter it was bound).

For example, assume the following syntax definition
Syntax break_with = ‘break’ (o) ‘with’ (w).

If used with the delicate_vase actions could differ if it occurs as the
direct object (o), or if it occurs as the indirect object (w). To implement
this the Verb body for break_with should also differ. For each

104 -

Alan Adventure System - Reference Manual

parameter in the syntax, you may define different actions by supplying a
verb alternative for each parameter identifier. The verb declaration
could look like

The feather Isa object
Verb break_with

When o Does
"The feather is even more flat than before."
Make feather flat.

When w Does
"There is not much that you can break with a feather!"

End Verb break_with.
End The feather.

If no alternative is explicitly specified the verb body will be considered
for all positions in the syntax. The compiler will warn for this if the
syntax allowed the class of instance to occur in all the parameter
positions.

Verb Qualification

qualifier = ‘BEFORE’
 | ‘AFTER’
 | ‘ONLY’

The order in which the different verb bodies are executed is normally
from the most general to the most specific. But, to allow for local
differences, i.e. special handling of the verb at this location, a any
possible definition of this verb in the current location (included
inherited verb bodies) are considered first. Then, the verb bodies in the
parameters (in the order they appeared in the syntax definition) on
which the verb was applied are examined to find and execute their verb
definitions. For each parameter, its most general definition is executed
first, verb bodies down the inheritance tree next, ending with any verb
body declared in the specific instance bound to that parameter.

In most circumstances, this is the most logical order, but if another order
is required, the verb qualifiers After, Before and Only may be used to

- 105

Alan Adventure System - Reference Manual

alter this behaviour. The qualifiers alter the order of execution and a
strict definition of this is described below.

Verb Execution

First all parameters are evaluated according to the syntax restrictions
(see Parameter Restrictions on page 95). Then, if they passed, the
checks of all verb declarations are evaluated (see Verb Checks on page
101). Finally the verb bodies are executed in the normal order as
explained by the table below.

Outer
Region

… Current
Location

First
paramete

r

… Last
parameter

Base class
(entity)

Outermost     

:      

Leaf class      

Instance      Innermost

The table above illustrates the normal order of execution of verb bodies
and checks. Starting with any base classes to the outermost region
(containing location), continuing to the actual instance of that location,
as illustrated by the first column. It then continues with any inner
regions (second column) and the current location itself (third column).
The execution then proceeds to the parameters of the syntax in order
(columns four through six), traversing the inheritance tree from the base
class to the instance.

Note: If you add a verb to the class entity, it will be inherited by
all instances, including locations and objects. This will

106 -

Alan Adventure System - Reference Manual

result in the execution of that verb body multiple times,
since it will be in every column in the table above.

Controlling Execution with Qualifiers
There are cases where you don’t want all the bodies to be executed, or
there is a special need to execute them in a different order. The most
common case is to prohibit other bodies to be executed, e.g. a verb body
in a location might want to stop the player from throwing any object.
This verb body must then ensure that it is the only verb bodies to be
executed. This can be done using the Only qualifier (see Verb
Qualification on page 105).

Qualifiers control the order of execution of verb bodies. How does this
work?

First, starting at the “innermost” according to the table above, the verb
in the last parameter (if any) is investigated and, if any of its (inherited)
verb bodies have the Before or Only qualifier it is executed. If the
qualifier was Only the execution is also aborted at this stage and no
more verb definitions are examined, otherwise the other parameters are
examined in the same way.

In the next step, the current location is examined and, if it contains (or
inherits) a verb definition with a Before or Only qualifier, that
definition is now executed (and if the qualifier was Only, execution is
aborted). Since locations can be nested, the surrounding locations are
then examined in the same way.

As a result of this behaviour, a Before qualifier in the verb definition in
an object parameter will supersede an Only qualifier in the location.

At this stage, all Before and Only qualifiers are handled appropriately.
This only leaves the definitions without any qualifier or with the After

- 107

Alan Adventure System - Reference Manual

qualifier. The outermost verb body (as indicated in the table above) is
examined and if it did not have the After specification, it is executed (if
it had an Only qualifier execution is stopped after executing it). Any
definition of the verb in the current location is again examined and, if it
did not have the After qualifier, it is executed. What remains is to
execute the verb definition in the parameters if they have not been
executed already, and to execute the location definition if they where
declared with the After qualifier.

So in short (with base class definitions of the outermost location being
the outermost and the instance bound to the last syntax parameter the
innermost):

• From the outside in, find any Before or Only definitions and
execute them (stop if Only found).

• From the inside out, execute any definitions not already executed
and not declared with the After qualifier.

• Execute the remaining verb definitions (those with an After
qualifier) from the outside in.

The second item in the above list is equivalent to the normal order of
execution.

The qualifiers are a powerful but confusing concept. The normal order
of execution is usually appropriate and only in special cases should
qualifiers be used. When they are needed, you will find that one
qualifier at the correct definition will normally do the trick. The above
algorithm is used to get a strict definition of the execution order. It is
not expected that all this complex behaviour will be needed in practice.

Note: All checks for a Verb will always be run in the normal
order regardless of any Before/After/Only qualifiers.

108 -

Alan Adventure System - Reference Manual

An example of the use of qualifiers is to ensure that only the verb body
within the object is executed:

The bomb Isa object
Verb take

Does Only
"Your curious fingering at the intricate

mechanism sets it of. BOOOM!"
Quit.

End Verb examine.
End The bomb.

This also illustrates the fact that the most commonly used qualifier is the
Only qualifier since it is used whenever all other behaviour is replaced
by some special behaviour.

3.11 Events

An event is a sequence of statements executed at a specified time (count
of turns). It is also executed at some specific location. An event can e.g.
be used to create an explosion where the bomb is three moves from now
or to let the ceiling of the cave fall down in five moves.

Event nearby_explosion
"Somewhere in the distance there is an explosion."
Make bomb gone_off.
Schedule small_avalanche After 2.

End Event.

The body of an event can be any sequence of statements. They can
however not refer to any parameters, since no verb is executing, or the
Current Actor. See Run-time Contexts on page 164.

Events may be scheduled and cancelled with the Schedule and Cancel
statements (see Event Statements on page 126).

- 109

Alan Adventure System - Reference Manual

3.12 Rules

rule = ‘WHEN’ expression (‘THEN’ | '=>')
 {statement}

 [‘END’ ‘WHEN’ ‘.’]

A rule is an arbitrary expression, which, when true, results in the
execution of some given statements. Rules can only be declared on the
global level (not inside classes or instances). The main intended use of
rules is to detect particular situations and then trigger some action.
Typically they can be used to make things happen when certain sit-
uations arise, such as starting an actor when the hero enters the cave.

Here is an example that investigates if the hero is in the cave and if so,
activates the monster:

When hero At cave And monster Not active Then
Use Script hunting For monster.

End When.

The expression that is tested may of course have any level of
complexity:

When hero At cave
 And (monster Is hungry Or monster Is angry)
 And sword Not In hero
=>

Use Script eat_hero For monster.
End When.

Each actor action and event execution is considered atomic (it can't be
divided into smaller parts). All rule conditionals are evaluated after each
actor (including the player) has acted (script step and player command
respectively) and after each event has executed. In effect this will mean
that a change in state will be detected almost immediately, if there is a
rule for detecting that change.

The statements within the rule are triggered when the condition
becomes true. In the first example, this means that if the monster is not

110 -

Alan Adventure System - Reference Manual

active, the statements will be executed when the hero enters the cave
('hero At cave' becomes true). A rule body can never be executed twice
in succession unless the conditional has been evaluated to false in
between. In the example above, the triggering of the hunting script for
the monster will not happen again unless either the hero has left the cave
and entered it again, or the monster has been active and then become not
active again.

The use of parameters, Current Actor, Current Location, Here and
Nearby is not allowed in rules conditionals or bodies.

Rules are executed at no location. Therefore it is not possible to
communicate directly with the player in the rule with output statements
(since the hero cannot be where the rule is executing, see Output
Statements on page 117). Triggering an event that handles the output
intended for the player, is the recommended solution to this.

The following is a complete game using a rule:
The kitchen Isa location
 Exit x To kitchen.
End The kitchen.

When Count Isa actor, At kitchen = 1
 Then Schedule whee At actor After 0.
End When.

Event whee
 "Whee!"
End Event.

Start At kitchen.

In this example the rule conditional (the text marked with grey) is using
an aggregation (“count”, see Aggregates on page 151) over two filters
(see section 3.21 Filters on page 152) that will count the number of
actors at the kitchen, and when that number becomes one, the rule will
trigger and execute the statements, in this case scheduling an event that
handles the presentation of the output to the player.

- 111

Alan Adventure System - Reference Manual

Again, remember that rules are checked after each actor has moved.
What happens if there are more actors in play and they move in and out
of the kitchen, is left as an exercise to the reader.

3.13 Synonyms

synonyms = ‘SYNONYMS’ {synonym_declaration}
synonym_declaration = word {‘,’ word} ‘=’ word ‘.’

A synonym declaration declare words that, when used in player input,
are always interchangeable. For example

Synonyms
‘i’, ‘invent’ = ‘inventory’.
‘q’ = ‘quit’.

The word on the right hand side of the equal sign must be a word
defined elsewhere in the adventure source, such as (part of) an instance
name (a noun or adjective), a direction or a verb. The list of words on
the left-hand side contains new words (not defined elsewhere) that
always will be interpreted as being replaced by the word on the right in
the player input.

Synonyms are player words that can be interchanged. Defining
synonyms for verb names will not always give you the result that you
expect. The following example is incorrect.

Synonyms
‘examine’ = look_at.

Syntax
look_at = ‘look’ ‘at’ (obj).

Verb look_at ...

This will result in an error message indicating that the synonym word
look_at is not defined. This is because the Syntax (see section 3.8)
defined the verb look_at to have the specified syntax (including the
player words ‘look’ and ‘at’), the player word look_at is not defined,

112 -

Alan Adventure System - Reference Manual

which is as well as the player would not be able to input a word with an
underscore (see Player Input on page 162).

You can achieve the desired effect by instead giving multiple verb
identifiers in the verb declarations; this will give the same verb bodies
(checks and actions) to multiple verbs. See the section on Verbs on page
99 for details on verb declarations.

It is also possible to define multiple names for an instance to achieve
other effects similar to synonyms. See Names on page 64 for a
description of this.

3.14 Messages

The Alan system has a number of standard messages built in. These
messages are presented to the player in various situations, both normal
and otherwise. An example is the following:

> go north
You can’t go that way.

The response "You can’t go that way." is a typical example of such
system messages (for details see Appendix C.1, Input Response
Messages).

To make the user dialogue more adapted to the settings you select, Alan
allows you to define your own version of these messages. The grammar
for this is

messages = ‘MESSAGE’ {message}
message = id ‘:’ {statement}

An example would be:
Message

NOWAY: "There is no exit in that direction."

- 113

Alan Adventure System - Reference Manual

If the above where used in the source for the same game as the previous
example, it would instead look like:

> go north
There is no exit in that direction.

The Message constructs allows general statements following the
message identifier:

Message NOWAY:
If Random 1 To 2 = 1 Then

"There is no way in that direction."
Else

"You can’t go there."
End If.

The standard message for Noway is replaced by the output from the
statements in the definition. For a complete list of all the identifiers of
messages and their use, see Appendix R on page 213.

Message parameters
Message sections must be declared at the global level, but to make it
possible to create high-quality messages the message sections have
parameters available. Which parameters are available vary depending on
the message, the details for each message is available in Appendix Input
Response Messages on page 214.

The parameters can be used in the same way as in verb bodies. The
names of the parameters are “parameter1”, “parameter2”, etc. The type
of the parameters will also vary.

For some messages, a parameter is an instance. In these cases, the
instance is always of the pre-defined entity class. Any attribute
available for this class will be available in message sections with
instance parameters.

114 -

Alan Adventure System - Reference Manual

Note: If the message must be modified according to the case of
the noun, which is the case with adjectives and negative
forms in many languages, an attribute available on all
instances can be used to select the correct form.

3.15 Prompt Section

The Prompt section allows you to customize the way players are
prompted for their input.

prompt = ‘PROMPT’ {statement}

The default prompt for player input, which will be used if no Prompt
section is declared, looks like

>

Using the following Prompt section it can be set to something else:
Prompt “What now?”

Then the player will of course see

What now?

In fact, the Prompt section allows any statements, not just strings. So
you can have the prompt change during the game.

Prompt
 "Hello" Say hero. "!$n"
 "Where do you want to go from"
 Say Current Location. "?"

This will give the following output:

- 115

Alan Adventure System - Reference Manual

Pirates Bay Harbor
You can see the town of Pirates Bay to the north, and your ship
is at the docks, to the south.
Hello Jack Sparrow!
Where do you want to go from Pirates Bay Harbor?

Note: The prompt section is global and applies to the whole
game. There is currently no way to dynamically
customize the prompt except by using the statements
inside the Prompt section itself.

3.16 Start Section

The start section defines where the player (the hero) will be at the start
of the game. This must be a location. Optionally this may be followed
by statements to be executed at the beginning of the game, such as
hello-messages or short instructions as well as starting any actors and
scheduling events.

start_section = ‘START’ where ‘.’ {statement}

An example would be
Start At outside_house.

Schedule bird_chirp After 5.

Only the ‘At What’ form of the Where construct (see WHERE
Specifications on page 139) is allowed in the Start section. Any
statements are allowed in the start section but they cannot refer to any
parameters.

The start section must be the last declaration in an Alan source.

116 -

Alan Adventure System - Reference Manual

3.17 Statements

Output Statements

There are various ways to present output to the player, string output,
descriptions, printing expressions, listing container content and showing
pictures.

The interpreter intersperses your output with spaces whenever needed.
This might for example occur between two output strings:

“There is a door into the kitchen.”
If kitchenDoor Is open Then
 “It is open.”
End If.

If handled simple-mindedly the two texts would be adjoined and you as
an author would need to cater for this. Instead Alan realizes that a space
is required between them. This space is automatically inserted by the
interpreter during game play. This is also the case if the output from a
Say statement is followed by an output string.

“Your wristwatch shows” Say hours Of watch.
“. Time to go.”

However, as in this example, this is not always the intended output.
Particularly, if the Say statement terminated the previous sentence, as in
the example, we want the full stop to be placed immediately after the
output. So, the Alan interpreter will leave out the space between two
outputs if the second starts with a period (full stop) followed by a space,
or is the single character in the string. This special handling also applies
to strings starting with a comma.

Whenever an output statement is executed, the result will be printed on
the players terminal with the following important exception: if an output
statement is executed at a location in the game where the hero not
presently is, the output will not be shown. This important feature will

- 117

Alan Adventure System - Reference Manual

relieve the author from the burden of constantly considering what the
player will see. It can be used in the following way:

"Charlie Chaplin leaves the house through the front door."
Locate charlie_chaplin At outside_house.
"Charlie Chaplin comes out from the nearest house."

If the hero is inside the house or out in the street, he will get different
views of the situation. This feature ensures that the player only sees
what is going on at the current location, and allows for easy adaptation
to various viewpoints on the events without the need for any special
tests. But see section 6.4 Distant Events on page 174 for a solution in
the case the hero need to be informed about things happening where he
isn't.

String Statement

output_statement = STRING

The simplest case of output is just a string, i.e. any text, possibly
stretching over multiple lines, surrounded by double quotes. See also
section 4.4 Strings on page 158 for some detailed descriptions on the
definition of strings.

Some character combinations have special meaning for the printout:
$p New paragraph (usually one empty line)
$n New line
$i Indent on a new line
$t Insert a tabulation
$$ Escape from automatic space insertion and capitalization
$a The name of the actor that is executing
$l The name of the current location
$v The verb the player used (the first word)
$_ Print this as a ‘$’ if in conflict with other symbols

Note: You might want to output “$400” but “$4” will be
interpreted as the indefinite form of the fourth parameter,

118 -

Alan Adventure System - Reference Manual

as described below. So you need to use the ‘_’ to make
that happen (“$_400”)

The following can be used to refer to parameters while executing a verb,
but the Say statement (see below) is safer and preferred whenever
possible:

$<n> The parameter <n> (<n> is a digit > 0, e.g. “$1”)
$+<n> Definite form of parameter <n>
$0<n> Indefinite form of parameter <n>
$-<n> Negative form of parameter <n>
$!<n> Pronoun for the parameter <n>
$o The current object (first parameter)

Note: The $<n> formats must be used with care as they are not
checked at compile time, e.g. you can use "$+1" in a
context where no parameter is defined which would lead to
a run-time error. To avoid the risk of any run-time
problems use the Say statement with the parameter name
wherever possible. See section Say Statement below.

Note: The use of $o is deprecated. The <n> variants are better,
but the recommended use is to refer to the parameters using
their parameter names in a Say statement instead. This will
ensure full reference analysis by the compiler protecting
against any runtime error.

Style Statement

style_statement = ‘STYLE’ style ‘.’

- 119

Alan Adventure System - Reference Manual

style = ‘NORMAL’
 | ‘EMPHASIZED’
 | ‘PREFORMATTED’
 | ‘ALERT’
 | ‘QUOTE’

The style of the text output can be controlled using the Style statement.
With the exception of the Emphasized style, the styles are intended to
be applied to whole paragraphs. The style indicated in the statement
applies until another Style statement is executed.

Note: The exact visual appearance of the styles is implementation
dependent. In fact, there is no guarantee that the styles will
actually differ.

Describe Statement

output_statement = ‘DESCRIBE’ what ‘.’

The Describe statement executes the description part for an instance,
such as an actor, an object or a location. If no such description exists a
default description, such as

"There is a coin here."

is used instead. In this case, if the instance has the container property, a
List statement is also executed for that object automatically (see
below).

If a Describe statement is executed for another instance during the
execution of the description clause, the system will recognise this and
make sure that the second instance is not described more than once. This
makes it possible to use instances as parts of a location and embedding

120 -

Alan Adventure System - Reference Manual

their description at the correct place in the longer description of the
location.

"This office is dusty and probably hasn’t been used for
many years."

DESCRIBE desk.
"To the west is an open door, and to the east you can see the

staircase.”

Say Statement

output_statement = ‘SAY’ [form] expression ‘.’
form = ‘THE’ | ‘AN’ | ‘IT’ | ‘NO’

The Say statement will output a short description of what is referred to
by the expression. If it refers to an instance, it will print the name of it
or execute its Mentioned clause if one is available. If it refers to an
attribute, it will print its value, such as an integer or a string. Parameter
names are also allowed in the Say statement, which, of course will result
in a short description of the instance to which it is bound, or a printing
of the literal (if the parameter was a String or Integer parameter).

If contents Of bottle > 0 Then
"In the bottle there are still"
Say contents OF bottle.
"litres of water left."

Else
"The bottle is empty."

End If.

If the what part refers to an instance, the optional form may be used to
control in which form the instance will be output.

If ‘THE’ is used the form used will be the definite form, usually the
short form preceded by a definite article. Correspondingly, the use of
‘AN’ indicates an indefinite form. A third form, using ‘NO’, is available.
It indicates that the negative form as defined by the negative article or
form should be output. Refer to Articles and Forms on page 77 for a

- 121

Alan Adventure System - Reference Manual

description of the definite/indefinite articles and forms. Finally, the
‘IT’ form will print the pronoun associated with the instance.

List Statement

output_statement = ‘LIST’ expression ‘.’

The List statement lists all objects in a container together with the
header as specified for the container. If the container is empty, the
statements in the empty clause of the container are executed instead.

"The chest is heavy."
If chest Is open Then

List chest.
End If.

Of course, the instance being listed must be an instance that has the
container property, which may be inherited. This instance can be
referred to by being bound to a parameter or a reference attribute for
example.

Multi-media Statements

Alan has some multimedia provisions, although they may not be
available on every platform and implementation. The Show statement,
presents an image in the output window, and the Play statement plays a
sound.

The Alan compiler will always support the multi-media statements, but
a particular interpreter might not do so. Most GLK-based interpreters
will support it but others might also. The game will still play fine, but
the multi-media resources will silently be ignored. There is also no way
to check for this in your source code. So, don’t rely on them for your
story, particularly do not give the player necessary information only
through pictures.

122 -

Alan Adventure System - Reference Manual

Image and sound files are analyzed by the compiler and copied into an
Alan v3 resource file (file extension .a3r) that must be distributed with
your game file, otherwise they will not be available during game play.
The original file will be left untouched.

The format of the resource file follows the standard Interactive Fiction
resource file format “blorb” and supports images of JPEG and PNG
types, and sounds of MOD and AIFF formats.

If a resource file is referenced from multiple statements, it will only be
copied once. The Alan compiler uses the file extension to determine the
media type of the file. The following extensions are recognized: .jpg,
.jpeg, .png, .mod, .aif and .aiff.

Show Statement

output_statement = ‘SHOW’ id ‘.’

The id should be the name of an image file. Since filenames may
contain various special characters, a quoted identifier (see File on page
159) is usually required.

Alan currently supports the PNG and JPEG formats only.

Play Statement

output_statement = ‘PLAY’ id ‘.’

The id should be the name of a sound file. Since filenames may contain
various special characters, a quoted identifier (see File on page 159) is
usually required.

Alan currently supports the MOD and AIFF formats only.

- 123

Alan Adventure System - Reference Manual

Manipulation Statements

Locate Statement

locate_statement = ‘LOCATE’ what where ‘.’

The Locate statement is a way of transferring instances to new
locations. When executed, the indicated instance will be placed at the
location given. For a description on how to specify where, see WHERE
Specifications on page 139. When an actor is located at a new location
the DOES clause of that location is always executed.

One special case of the Locate statement is when the predefined actor
hero is located somewhere. This is analogous to the player typing a
direction, i.e. the hero will be located at the appropriate location. Under
particular circumstances, you may want to locate the player at a
different location as a side effect of another action. For example:

Event explosion
"Suddenly the door seems to bulge outwards, it bursts

open throwing rocks and splinters everywhere. The
impact of the explosion literally throws you back
out in the hallway."
Locate hero At hallway.

End Event explosion.

In this case, the new location will be described and the Does clause of
that location executed.

Another special case is when locating something inside a container. The
Locate statement will then cause the execution of the limits of that
container, and if any of the limits are exceeded the complete player turn
is aborted immediately, resulting in no more statements being executed.
So, if a player command should result in the location of an object inside
a container, a good thing is to place the Locate statement as early as
possible, as this enforces the limit checks in the beginning of this player
turn.

124 -

Alan Adventure System - Reference Manual

A very special third case is locating a location at another location.
Locations can in this way be nested, resulting in an outer location
working as a region or surrounding for the inner location. The effect of
this is that any instances present in the outer location are reachable from
the inner.

Empty Statement

empty_statement = ‘EMPTY’ what [where] ‘.’

The Empty statement locates all instances currently located inside the
given container (instance with the Container property) at a certain
location. The meaning of the where part, is the same as in the Locate
statement. If it is not specified the instances will be placed at the current
location.

Empty inventory Here.
"You seem to have lost most of your possessions. Well,

you can’t have everything."
Locate hero At restart_point.

Strip Statement

strip_statement = ‘STRIP’ [direction] [count] [size]
 from_clause [into_clause] ‘.’
direction = ‘FIRST’ | ‘LAST’
count = expression
size = ‘WORDS’ | ‘CHARACTERS’
from_clause = ‘FROM’ expression
into_clause = ‘INTO’ expression

The Strip statement is used to manipulate the contents of strings
content. You can use it to remove words or characters from a string,
starting from the beginning or the end. The words or characters that are
removed may be placed in an attribute as specified by the optional into
clause. If the statement is used to manipulate words, blanks and

- 125

Alan Adventure System - Reference Manual

separators are used to separate the words. In this case, any resulting
string is also free of leading and trailing blanks.

A short example
The eliza Isa actor

Has topic "".
Verb talk_to

Does
Set topic Of eliza To “sailing music cooking reading”.
Strip Random 0 To 2 Words From topic Of eliza.
Strip First Word From topic Into topic.
“And how do you feel about” Say topic Of eliza. "?"

End Verb.
End The eliza.

Event Statements

Schedule Statement
Schedule will queue an event to occur at a specified location after the
number of player turns specified by the expression.

event_statement = ‘SCHEDULE’ what [where]
‘AFTER’ expression ‘.’

For example
Schedule ringing At clock After 60 - minutes Of clock.

The number of moves can be zero, i.e. After 0 means that the event
will occur now (during this player turn, probably last, though). If no
location is specified, Here is assumed, i.e. it will be executed at the
current location, the location where the statement itself was executed.

An important case is when a Schedule statement without a where-
clause is executed inside a Rule. Since rules are executed at nowhere so
will the event. This means that any printout will be done nowhere and
thus will be invisible to the player.

126 -

Alan Adventure System - Reference Manual

If the where-expression has the form At id, and the identifier
represents an instance not inheriting from location, the event will
occur wherever that instance is when the event occurs. The event will
‘follow’ the instance.

Executing a second Schedule statement for the same event before it has
occurred will reschedule the event to the new time. An event can only
be scheduled for one execution at a time.

Note: The event can be specified by giving an event identifier or
referring to an attribute of Event type.

Cancel Statement

cancel_statement = ‘CANCEL’ what ‘.’

Cancel will remove the event referenced from the queue of scheduled
events. It is not an error to remove an Event, which is not currently
scheduled.

Event ticking
"Tick..."
If timer Of bomb = 0 Then

Schedule explosion After 1.
Else

Decrease timer Of bomb.
Schedule ticking After 1.

End If.
End Event ticking.

Verb defuse
Does

Cancel ticking.
Cancel explosion.
"Phuuui! That was close."

End Verb defuse.

- 127

Alan Adventure System - Reference Manual

Start At office.
"The bomb is ticking..."
Schedule ticking After 1.

The event can be referenced using any expression of Event type, e.g. an
attribute.

Assignment Statements

There are a number of statements for changing values of attributes.

Make Statement

make_statement = ‘MAKE’ what something ‘.’
something = [‘NOT’] id

The Make statement is used to set or reset Boolean attributes.
Make door open.
Make door Not open.

Increase and Decrease Statements

increase_statement = ‘INCREASE’ what [by] ‘.’
decrease_statement = ‘DECREASE’ what [by] ‘.’
by = ‘BY’ expression

The Increase and Decrease statements modifies the values of numeric
attributes by increasing or decreasing them by the value of the
expression given in the optional By clause. If no By clause is specified
the attributes are changed by one.

Increase level Of bottle By contents Of mug.
Decrease lives Of hero.

128 -

Alan Adventure System - Reference Manual

Set Statement

set_statement = ‘SET’ what ‘TO’ expression ‘.’

The Set statement is used when assigning values to numeric, string,
reference of set valued attributes.

Set mood Of king_tut To 3.
Set hour Of clock To hour Of clock + 1.

Setting attributes of reference or set type requires that the expression
follow the type and subclass compatibility rules. For example, you can
only assign

• integer type expressions to an integer attribute
Set intAttr To 4. -- Correct if intAttr is of Integer type
Set intAttr To “hi”. -- Incorrect

• an expression that refers to an instance if the attribute being
assigned to is a reference attribute which has a class of which the
class of the expression is a subclass

Has suspect butler.
Set suspect Of detective To someLocation. -- Incorrect

• a set valued expression to a set type attribute if all members are
instances of some subclass of the member class of the target
attribute. Here are some examples, given the natural types of the
instances

Has friends {monica, ross, chandler, rachel, phoebe, joey}.--
persons
Set friends Of mine To {book}. -- Incorrect, probably not a person
Set friends Of mine To {}. -- Correct, empty set is always OK
Set friends Of mine To {suspect Of detective}. -- Correct maybe

Include Statement

include_statement = ‘INCLUDE’ expression ‘IN’ set ‘.’

- 129

Alan Adventure System - Reference Manual

The Include statement is used to include a new member in a Set.
Typically, this is used to an instance or value to a collection of such. See
section Set Type on page 50 for an explanation of the Set type. A
member already in the Set will silently be accepted but not generate
duplicate entries.

The set may be identified using an expression involving reference
attributes:

Include hitchhiker In friends Of driver Of car.

And vice versa:
Include driver Of car In friends Of hitchhiker.

Exclude Statement

exclude_statement = ‘EXCLUDE’ expression ‘FROM’ set ‘.’

The Exclude statement is the reverse of the Include statement. It
removes a member from a Set. An attempt to remove something not
included in the Set will be silently ignored, so that after the execution of
the statement it is guaranteed that the member is not in the Set.

Note: The inclusion or exclusion of an instance will not affect its
location. A member may be included in multiple Sets.

Conditional Statements

In Alan there are two conditional statements, the common If statement
and the Depending On statement.

130 -

Alan Adventure System - Reference Manual

If Statement

if statement = ‘IF’ expression ‘THEN’ statements
{ elsif_part }
[else_part]

 ‘END’ ‘IF’ ‘.’
elsif_part = ‘ELSIF’ expression ‘THEN’ statements
else_part = ‘ELSE’ expression ‘THEN’ statements

The If statement is essential for varying output and otherwise change
the activities in the game. The expression is evaluated (see Expressions
on page 142 for details and examples of expression) and if it evaluates
to true, the statements following the Then are executed. Otherwise, the
expressions in any following Elsif clauses are evaluated (in order) and
the statements following the first expression that results in a true value
is executed. If none of the expressions in the Elsif clauses evaluated to
true, or there are no Elsif clauses, the statements following the Else
are executed. The Else clause is optional.

If minute Of clock = 59 Then
Set minute Of clock To 0.
Increase hour Of clock.

Else
Increase minute OF clock.

End If.
If level Of bottle = 0 Then

"You have no water."
Elsif level Of bottle < 5 Then

"You have almost no water left."
Else

"You have plenty of water."
End If.

If statements which have an Isa-expression (see Class Expressions on
page 146) are particularly important. As an Isa-expression test for the
class of an instance, an If statement like

If i Isa actor Then ...

will quarantee that for any statement inside the Then-part of that
statement, the i will be of the class actor. This means that references to

- 131

Alan Adventure System - Reference Manual

attributes, container properties and actor scripts etc. as if i belongs to
the class actor, even if that was not known outside of the If-statement.

A typical example where this is helpful is inside verbs where parameters
can be restricted to more general classes by the syntax and the actual
action can still perform specific actions only allowed on more
specialized classes. Another would be in a loop over some unknown set
of instances.

For Each e Isa entity, Here Do
If e Isa actor Then ...
If e Isa object Then ...
If e Isa container_object Then ...

End For.

Depending On Statement

depend_statement = ‘DEPENDING’ ‘ON‘ expression
 {case}
 ‘END’ ‘DEPEND’ ‘.’
case = right_hand_side ‘THEN’ statements
 | 'ELSE' statements

The Depending On statement is a provided to select one of a number of
possible conditional cases depending on an expression. The expression
can be any expression. The right-hand side is the right hand side of
any valid expression. When combined with expression (as the left
hand side of the expression) they will be a complete expression, that is
evaluated.

A simple example of the Depending On statement is:
Depending On weight Of obj

= 1 Then "light as a feather"
Between 2 And 10 Then "carryable"
Between 10 And 20 Then "heavy"
> 20 Then "immobile"
Else "weightless"

End Depend.

132 -

Alan Adventure System - Reference Manual

The meaning of this example is to test the weight Of obj and select
one of the cases depending on the value of it. If it is equal to one the
first case will be executed. If none of the cases match, the optional Else
case will be executed (in this case it will only be executed for weights of
zero or less).

The cases are tested in the order specified. At most, one case will be
executed. In the example, a weight of ten will render as "carryable".

The tests are thus equivalent to
If weight Of object = 1 Then "light as a feather"
Elsif weight Of object Between 2 And 10 Then "carryable"
Elsif weight Of object Between 10 And 20 Then "heavy"
Elsif weight Of object > 20 Then "immobile"
Else "weightless"
End If.

A Depending On statement is preferable to a chain of If statements
when the same expression will be tested for multiple matches.

Actor Statements

Actor statements are statements that are used to control actors.

Use Statement

use_statement = ‘USE’ script [‘FOR’ actor] ‘.’

The Use statement starts execution of a given script for a given actor.
The For actor clause is optional when writing code within a certain
actor; in this case that the statement applies to the actor that the code is
in.

Use Script playing For george.

- 133

Alan Adventure System - Reference Manual

Note: You can use an expression such as a simple identifier, a
parameter reference or a reference attribute as the actor
clause.

Stop Statement

stop_statement = ‘STOP’ actor ‘.’
actor = expression

The Stop statement stops an actor from proceeding with any script it
may be executing. In effect, it will abort it and put the actor in an idle
state. The most common case is the direct reference to an actor using its
identifier. More complex expressions resulting in an actor type value,
such as a parameter reference or a reference attribute, can be used as the
actor clause.

Repetition Statements

The Alan language provides one compound statement for repetition, the
For Each statement.

repetition_statement = ‘FOR’ ‘EACH’ id [filters] ‘DO’
 statements
 ‘END’ ‘FOR’ ‘EACH’ ‘.’
filters = filter { ‘,’ filter }
 | ‘BETWEEN’ expression ‘AND’ expression

You can optionally leave out either For or Each but not both.

The identifier is called the loop variable and will have similar semantics
as a syntax parameter. It will dynamically be bound to instances, one for
each repetition. In the body of the loop, the statements, this variable can
be referenced in the same way as a syntax parameter.

134 -

Alan Adventure System - Reference Manual

The optional filters can be used to restrict the values in the loop. If the
Between form is used, the loop becomes an integer loop, resulting in the
loop variable having integer type and range from the two expressions
inclusive. Otherwise, the loop variable will be of instance type and will
consecutively assume the value of each instance fulfilling the filters. See
Filters on page 152 for an explanation of filters.

Any references to the loop variable within the repetition will refer to the
instance bound, or integer value, in this repetition.

You can use any statements inside the repetition, e.g. to check for
further conditions before operating on the instance. For example

For Each creature Isa actor Do
If creature Here Then

…
End If.

End For.

Special Statements

Quit Statement
Quit prints a question giving the player the choice of restarting the
game, reloading a previously saved game or to quit. Any scoring or
other printouts have to be made explicitly before executing the Quit
statement.

Look Statement
Look describes the current location (the current location is dependent on
in which context it is executed) and what it contains to the player. First
the location name is output, then the Description part for the location
is executed. If you do not want the name of the location to be included
you can use a Describe statement instead.

Then all object and actors at the location will automatically be executed
by means of an implicit Describe for each of them. Any objects or

- 135

Alan Adventure System - Reference Manual

actors that were explicitly described using a Describe statements, will
be excluded from this automatic Describe.

The equivalent of a Look is automatically performed when the hero
enters a new location.

Note: As the player will only see output generated at the same
location as the hero, a Look executed by another actor at
some other location will not be seen by the player. See
Output Statements on page 117 for more details on this
important consideration.

Save and Restore Statements
Save saves the game on a file for later use with Restore. Both save and
restore asks the player for a file name to use for storing and restoring.
This allows the player to use unlimited number of save files.

If the player should be shown the current surroundings after a Restore,
you will have to implement a player verb like

Verb restore
Does

Restore.
Look.

End Verb restore.

Score Statement
Score is a way of rewarding the player by giving points for certain
actions. This is done using the statement

score_statement = ‘SCORE’ integer ‘.’

For example
Score 25.

136 -

Alan Adventure System - Reference Manual

The first time every such statement is executed the points given are
added to the player’s current score. Score without any arguments prints
a message indicating the current accumulated score.

Note: The Score statements assume a simple model of scoring; a
number of actions are necessary to complete the game and
all those are necessary to achieve the maximum number of
points. Negative scores are not allowed and once a score is
awarded it cannot be revoked, neither will it be awarded
twice. For adventures having a more complex and varied
scoring system (particularly if the game can be successfully
finished without performing all scoring actions or in
multiple ways), manual scoring should instead be
implemented using attributes (e.g. on the hero) and suitable
manipulation and test statements.

Visits Statement
The Visits statement changes the number of times a location can be
visited before the long description is presented again:

visits_statement = ‘VISITS’ count ‘.’

The value of the argument (count, which must be an integer number)
controls the number of visits to a particular location between full
descriptions. The initial setting of 0 (zero) indicates that every time a
particular location is visited its full description will be shown (which
can also be expressed as: the full description will not be shown 0 times
in between). Thus, a setting of 1 (one) would give a full description
every second time the same location is visited. So

Visits 0.

will always show full descriptions (which is also the initial setting).

- 137

Alan Adventure System - Reference Manual

Note: The classic and familiar commands verbose, brief etc.
can be imitated using different values in the Visits
statement.

Note: The handling of descriptions is rather conservative in that it
also takes modified attributes into account. If the visits
calculation would indicate no full description, a modified
attribute of the location will cause the full description to be
shown the next time. That attribute might have caused the
description of the location to change. So the visits handling
ensures that the player will “see” all changes to the
location. If you set attributes of the location every time
they are visited, the built-in visits handling will not work as
you expect.

Associated with this is a pre-defined attribute, visits, that exists for all
instances inheriting from location. It will count how many times the
player have visited the location. For example

The secret_cave Isa location
 Description
 "This is the secret cave. You have visited it"
 Say visits Of This.
 "times before."
End The secret_cave.

Transcript Statement

transcript_statement = 'TRANSCRIPT' ('ON' | 'OFF') '.'

Using the Transcript statement you can turn transcripting on or off.
When transcripting is turned on all player input and game output is
recorded in a file (or similar) which can be studied afterwards. Example
uses are

138 -

Alan Adventure System - Reference Manual

• reading the game output as a novel (player)

• comparing the output to output from previous versions of the
game (author)

• comparing output to the output of a v2 game (porting from v2)

To enable player access to the transcripting function you need to
implement global verbs:

Syntax script_on = 'script' 'on'.
Verb script_on
 Does
 Transcript On.
 "Transcript turned on."
End Verb.
Syntax script_off = 'script' 'off'.
Verb script_off
 Does
 Transcript Off.
 "Transcript turned off."
End Verb.

3.18 WHERE Specifications

Many constructs in the Alan language require a specification of where
the construct should operate. The general intention of such a Where-
specification is to specify a location.

where = ‘HERE’
 | ‘NEARBY’
 | ‘NEAR’ what
 | ‘AT’ what
 | ‘IN’ what

The meaning of the different constructs is as follows

• Here is the location where the current activity is performed. Often
this means where the hero is, but if the expression is evaluated in
another run-time context this context is used. See Run-time
Contexts on page 164 for a detailed discussion, but examples

- 139

Alan Adventure System - Reference Manual

include an event scheduled at a particular location, in which case
that location is Here. Note that Here is equivalent to At Current
Location.

• Nearby means at any adjacent location. An adjacent location
means that there exists an exit from the other location to Here
(note that the direction is from Nearby to Here). It is allowed to
refer to any instance using an identifier or expression. In
particular, instances inheriting from location are allowed, which
can be used to see if someone at that location can use an exit to
get here.

• Near what has a similar meaning to Nearby except that it refers
to some other instance (the what) instead of the current location.
The results is a truth value indicating if that other instance is at a
location which is nearby (has an exit to) that of the location of the
first instance.

• At what means at the location of the instance referenced by the
what specification (see WHAT Specifications on page 141). Note
that an instance is always At itself, i.e. x At x is always true. This
can come as a surprise, especially if you try to aggregate or loop
over instances. (See Aggregates on page 151 and Repetition
Statements on page 134.)

• In what must refer to a container and the expression refers to
inside of that container.

These forms can be used in Locate statements and in some expressions
for example. When used in their basic form in expressions they all look
inside containers (and container in containers) to evaluate the
expression. See The Whereabouts of an Entity on page 150 for more
information about Where expressions.

Note: Not all kinds of Where specifications are meaningful in all
constructs. Examples are Nearby and Near. They cannot be

140 -

Alan Adventure System - Reference Manual

used in a Locate statement, as it requires a specific
location to locate to.

3.19 WHAT Specifications

Constructs in the grammar for the Alan language often refer to some
class or instance defined in the Alan source. This is generally called a
what specification, as it specifies what the construct refers to. An
example is the Locate statement that must refer to something that
should be relocated.

what = ‘CURRENT’ ‘ACTOR’
 | ‘CURRENT’ ‘LOCATION’
 | ‘THIS’
 | id
 | attribute_reference

The meaning of the different forms of the what specification are:

• Current Actor is always set to the actor currently active, e.g.
when a non-player actor is running a script this refers to the actor
instance that is running.

• Current Location is the current location, i.e. the location where
the current activity is performed. Normally this is the location
where the hero is, but may also be where an event is executed or
the location where a scripted actor currently is executing. See
Run-time Contexts on page 164 for more details.

• This refers to the instance in which code, such as a verb body or a
script, is run. This can for example be used to test or set attributes
in inherited code, thus testing or setting attributes in the instance
while the code is defined in a class that the instance inherits from.
It cannot be used in events or global verbs.

- 141

Alan Adventure System - Reference Manual

• An identifier, id, refers to the class or instance with that name, a
syntax parameter, script or loop variable with that name. A syntax
parameter may have the same name as an class or instance
declared elsewhere in the source in which case the parameter has
precedence.

• A reference to an attribute, as described in section Attribute
References on page 143, might be used depending on its type and
the context of the usage of the what-expression.

Note: Not all kinds of What specifications are meaningful in all
contexts. For example it is not possible to use Current
Location (nor an identifier referring to an instance
inheriting from location) as the what-part of a Locate In
statement. (Since it is illogical to locate locations in
containers.)

3.20 Expressions

The grammar for Alan refers to expression. This is a generic name for a
number of constructs yielding a value. The following sections describe
the different kinds of expressions available in the Alan language.

Types of Expressions

Expressions are used e.g. in If and Set statements. The If statement re-
quires a Boolean expression, i.e. an expression yielding a true or false
value, while the Set statement can handle all other types of values. See
section Types on page 49 for details on types.

142 -

Alan Adventure System - Reference Manual

Literal Values

A single integer (e.g. 42) is a numeric expression. A string is an
expression and represents a string value, e.g.

Set password Of terminal To "xyzzy".

A value of the set type can be constructed directly as an expression. This
can be used in a Set statement or another expression. E.g.

Set suspectedWeapons Of detective To {gun, bat, axe}.

Each member in the set expression can be an expression of integer or
reference type in itself.

Attribute References

attribute_reference = id ‘OF’ expression
 | expression ‘:’ id

A references to an attribute can be used as part of any expression
provided its type matches the semantics of the context. The type of the
expression is the type of the attribute.

There are two formats available, of which the first resembles plain
English.

Set password Of terminal To password Of manual.

The second format is more compact, which might be preferable when
referring to chains of attributes referring to other attributes. See
Reference Attributes on page 69 for an explanation on how this works.

Say detective:suspect:weapon.

It might help to read the ':' as a replacement for ´s. In this example the
detective must be known to have a reference attribute, 'suspect', which
can only refer to instances of a class that have an attribute named
'weapon'. It would be the same as

- 143

Alan Adventure System - Reference Manual

Say weapon Of suspect Of detective.

You can test Boolean attributes of an instance by following the pattern

expression = expression ‘IS’ something

For example
If bottle Is empty Then …

The test can be reversed by adding a Not:
If hero Is Not hungry Then …

Location Of
There is a particularly useful pre-defined pseudo-attribute, location,
that can be used to query an instance of which location it is currently at.

Make location Of magic_lantern lit.

This attribute is pre-defined on all instances and is guaranteed to return
an instance of the class location, and it will be the innermost location of
the instance (bearing in mind that locations may be nested).

Random Values

There are three types of random expressions. The first is the traditional
random integer expression.

expression = ‘RANDOM’ expression ‘TO’ expression

The random integer expression returns a numeric value that is randomly
selected between and including the values of the two expressions.
Arbitrary expressions yielding an integer value can be used as the
boundary expressions.

Set eyes Of first_die To Random 1 To 6.

144 -

Alan Adventure System - Reference Manual

Decrease temp Of room By Random 0 To temp Of Room.

The second and third types return a random member in a set or in a
container respectively.

expression = ‘RANDOM’ [‘DIRECTLY’] ‘IN’ expression

If the expression refers to a container, the expression returns one of the
instances currently in that container. The type of the entire expression is
instances of the class accepted by the container. See Container
Properties on page 81 for details on how to determine the class of
instances allowed inside a container.

If the expression refers to a set, the result is one of the members in the
set. The type and class of the entire expression is determined by the
allowed members in the set. See Set Type Attributes on page 71.

The optional keyword Directly is only allowed if the expression refers
to a container. The semantics is the same as for the Where expression,
see The Whereabouts of an Entity on page 150.

Note: Attempting to apply a random selection from an empty set
or container is one of the very few situations that could
lead to a runtime error. It is the responsibility of the author
to ensure that this is not attempted. You should always
surround a random member expression with an If
statement that ensures that the set or container is not empty
to guard against such runtime errors. See Aggregates on
page 151 for descriptions on how to count members in a set
or container.

Note: A thing or entity inside a container, which normally do
not exhibit themselves, will be candidates for being
selected by a Random In statement, as any other instance.

- 145

Alan Adventure System - Reference Manual

Logical Expressions

expression = expression (‘AND’ | ‘OR’] expression

The And and Or operators are standard binary Boolean operators,
meaning that the result of an expression is true or false depending on the
right and left expressions, which must also be boolean values or
expressions. For And both expressions need to be true for the expression
to be true. If using Or either of them need to true. Otherwise the
expression will be evaluated to false.

And has higher priority, but parenthesis may be used to change the order
of evaluation.

If kalif Here And mood Of sultan Is 0 Then ...
If o Isa treasure And (size Of o > capacity Of c

Or thief Is greedy) Then ...

Class Expressions

expression = something ‘ISA’ class_id

It is possible to check if an instance belongs to, or inherits from, a
particular class. The resulting value is a Boolean type value.

If p Isa object Then …
If opponent Isa enemy Then …

There is a subtle but very important side effect of checking for an
instance class in an If-statement like the above. Doing that will ensure
that the instance or parameter that is checked has all the properties. This
holds true for all statements in the Then-part of the If-statement.

This is used by the compiler to allow references to attributes, scripts,
container properties etc. that otherwise would not be allowed.

146 -

Alan Adventure System - Reference Manual

A very common use of this is to restrict parameters in a Syntax to a
more general class, like thing or entity, and then doing “manual”
restrictions using If-statements to ensure that usage does not conflict
with the actual properties of the instance. Also see the section on If
Statement on page 131.

Binary Operators

All binary operators (plus, minus, multiplication, division) may be used
on integer expressions. The result is another integer expression. The
exact set of available operators is

+, -, *, /

For example
age Of golden_child + 4

The plus operator (+) may also be used on strings for concatenation. The
meaning of such an expression is that the two strings are concatenated
into a resulting string. For example

string1 + " " + anotherString

Relational and Equality Operators

Equality (‘=’, meaning equals) and relational operators (‘<’, ‘>’, ‘<=’,
‘>=’, meaning: less than, greater than, less than or equal, greater than or
equal respectively) are used to compare expressions. The result is true or
false and may be negated by using an optional Not.

If temperature Of oven Not > 100 Then …
If weather Of world Not < protection Of hero Then …

Comparing two string expressions using the binary equality operator ‘=‘
will make a case insensitive comparison, i.e. it will give a true value if
the strings are the same without considering the case of the characters.

- 147

Alan Adventure System - Reference Manual

The special identity operator, ‘==‘, only works on strings and compares
the strings for an exact match (i.e. considering character case).

Two values of instance type may be compared with the ‘=‘ and ‘<>‘
operators, and may e.g. be used to test if a parameter refers to a
particular instance or is the same as another parameter. For example

Syntax put_in = ’put’ (o) ’in’ (c)
Where c Isa Container

Else "You can’t put anything in the" Say c.
Verb put_in

Check o <> c
Else "That would be a good trick if you could

do it!!"
Does

…

Relational operations are not allowed on entities or strings, nor is it
possible to compare values of different types.

A special relational operator is the Between operator which makes it
possible to test if a numeric expression is within a range of values. The
range is inclusive, i.e. the values are included in the accepted range. For
example

If level Of water Between 2 And capacity Of bottle Then …

String Containment

There is a string containment operator, Contains, which can be used to
test if a string contains another string. The test ignores any differences
in character case. An example of an expression that is true is

"A string" Contains "a S"

An optional Not (before Contains) can be used to reverse the test.
"A string" Not Contains "a S"

The expression yields a Boolean value.

148 -

Alan Adventure System - Reference Manual

Current Entities

There are two particularly interesting entities that you might want to
know something about or which they are. They are

• Current Actor
• Current Location

These two expressions can be used wherever a reference to an instance
can be used. They will refer to the currently executing actor and the
current location respectively. Details about execution contexts can be
found in Run-time Contexts on page 164.

This Instance

You can also refer to the instance that is actually executing the code
containing the expression. This is particularly useful when using
inheritance since the class defining the code have no way of knowing
which instance will actually execute it. This expression is This.

An example is the code for objects that can be opened:
Every openable Isa object
 Is Not open.
 Verb open
 Check …
 Does
 Make This open.
 End Verb.
End Every openable.
The door Isa openable
End The door.

> open the door

Given these two declarations and some syntax declarations the door will
inherit the open attribute. When the verb body, also inherited from
openable, is executed, it will set the attribute on the door, because this
instance is running the code.

- 149

Alan Adventure System - Reference Manual

The Whereabouts of an Entity

expression = what [‘NOT’] [transitivity] where

An expression following the above pattern can be used to test if a
particular instance, as specified by the what, is (or is Not), at the place
indicated by the where, as in

If bottle In inventory Then …

or
If hero Not Nearby Then …

The forms available for the Where expression are described in detail in
WHERE Specifications on page 139.

The default behaviour of a Where expression is to evaluate recursively
through containers, e.g. if the bottle was inside a bag which was in the
inventory, the first expression above would still be true. This implicitly
transitive evaluation can also be made explicit through the use of the
keyword Indirectly. This would result in exactly the same semantics,
but it is explicitly expressed, which can be useful.

transitivity =
 | 'DIRECTLY'
 | 'INDIRECTLY'

| 'TRANSITIVELY'

In addition, another qualifying keyword, Directly, can be used to
indicate that the expression should not evaluate recursively into
containers. To test if an instance is at a particular location but not in a
container at that location you can use:

If key Directly At treasury Then …

The qualifying keyword Directly works in the same way with all
Where expressions. Adding a Directly qualifier to the first example
150 -

Alan Adventure System - Reference Manual

above would change the expression to only be true if the bottle was in
the container but not inside any other container even if that container
was in the inventory. See Containment , Classes and Transitivity on
page 35 for some background information.

Note: If the transitivity is not Directly, the compiler analyses the
container to see which classes of instances might be
contained transitively. This includes all existing instances
of the class that the container takes, and if any of those are
containers, those containers and all instances of the
classes they take and so on.

Aggregates

aggregate_expression = aggregate filters
aggregate = ‘COUNT’ | ‘SUM’ | ‘MAX’ | ‘MIN’

Aggregates are functions to calculate values from sets of instances.
There are four aggregates available, Count, Sum, Min and Max.
Aggregates work by inspecting all instances available, applying the
filters, which may remove some, or even all, from the set of instances,
and then calculate the value from the remaining instances.

You can use filters to filter out instances belonging to a particular class,
at a particular location or having a particular Boolean attribute. See
Filters on page 152 for an explanation of filters.

Count counts the number of instances in the set, e.g.
"You are carrying"
Say Count Isa object, In inventory, Is big.
"big objects."

In this example there are three filters applied, “Isa object”, “In
inventory” and “Is big”. All of these filters must pass before an instance

- 151

Alan Adventure System - Reference Manual

is counted. The result of that count is an integer, which is then printed
using the Say statement.

The Sum, Min and Max aggregates return the sum, minimum and
maximum value respectively, of an attribute of all instances in the
filtered set.

Any attribute referred to either in the aggregation itself or in the filters,
must be an attribute of some class in order to ensure that the attribute is
available for all instances. You must ensure this by filtering out only
instances of the relevant class, e.g. objects, using a class filter.

Some examples:
If Sum Of weight At bridge > 500 Then …
If Max Of size In inventory > size Of small_door Then …
If Count Isa lightsource, Is lit, Here > 0 Then

“Let there be light…”
End If.

These examples could be used to create various restrictions in the
possible travels of the hero.

3.21 Filters

filters = filter { ‘,’ filter }
filter = ‘ISA’ class
 | is attribute
 | where

Filters can be used to filter out only particular instances to loop or
aggregate over. If one of the filters is a Isa <class>, only instances of
that class will be bound to the loop variable or considered in the
aggregation. In particular this is required if any of the other filters refer
to attributes, which is only allowed if the class is known and that class is
guaranteed to have that attribute. Other ways to restrict the filtered
instances is to use a Where filter which implicitly restricts to instances

152 -

Alan Adventure System - Reference Manual

available at or in that location, container or set. See The Whereabouts of
an Entity on page 150 for details on the various forms of the Where
expression.

Multiple filters can be listed separated with a comma. Each filter must
enumerate the set of values to a compatible set, e.g. using two ‘Isa’
filters for actors and locations respectively is not allowed since those
two sets can never be compatible.

- 153

Alan Adventure System - Reference Manual

4 LEXICAL DEFINITIONS

4.1 Comments

Comments may be placed anywhere in the Alan source. A comment
starts with double hyphens (‘--’) and extends to the end of the line.

-- This is a comment

4.2 Words, Identifiers and Names

An identifier is a word in the Alan source, which is used as a reference
to a construct, such as an instance. Identifiers may only be composed of
letters, digits and underscores. The first character must be a letter.

identifier = letter {letter | digit | underscore}

There is also a second kind of identifier, namely the quoted identifier.

id = identifier
 | quoted_identifier
quoted_identifier = quote {any_character} quote

A quoted identifier starts and ends with single quotes and may contain
any character except quotes (including spaces). By quoting any
sequence of characters can become an identifier. A quoted identifier

- 155

Alan Adventure System - Reference Manual

may also be used to make an identifier out of a reserved word such as
Look. This is useful in the definition of the verb look. It would look
like:

Verb ‘look’
Does

Look.
End Verb ‘look’.

Quoted identifiers retain their exact content. They may contain spaces
and other special characters, which make them useful as long names for
locations as in

The pluto Isa location Name ‘At the Rim of Pluto Crater’
Description

...

One single-quoted identifier is used as the whole name of the location to
preserve editing and avoiding clashes with the reserved words At and
Of. (This could also have been avoided by quoting just those words.)

Identifiers and words retain their capitalization. An example is
The eiffel_tower Name Eiffel tower …

The first word in the name will always be printed with a capital ‘E’.
However, when comparing the word to player input and other
occurrences of the same word in the source, case will be ignored. This
means that you cannot have two words or identifiers that differ only in
case, they will be the same and stored in the game data as one of the
occurrences, which one is implementation dependent.

Note: Do NOT use a single quoted identifier with spaces or
special characters in them as the name for anything other
than locations, as the words in names are analysed
separately and are assumed to be adjectives and nouns
(where it is assumed that the last is the noun). Except for

156 -

Alan Adventure System - Reference Manual

this you should only quote single words to avoid clashes
with reserved words.

Note: Any one of the occurrences of a word might define its
capitalization, which one is unspecified. This might affect
the output if you use capitalization for names of locations,
such as “Name Shore of Great Sea”. Such names can
inadvertently make the game use “Great” for all “great”
things in your game. You can avoid this by using a quoted
identifier for the complete name of the location.

Be careful when using quoted identifiers, especially if the player is
supposed to use the word. A player cannot input words containing
spaces or other special characters or separators. The only exception
being underscores and dashes. A player input word must start with a
letter.

Note: To get a single quote within a quoted identifier repeat it
(‘Tom’’s Diner’).

Some of the identifiers in the source for an Alan game are by default
used as player words. This is for example the case with verb names
(unless a Syntax statement has been declared for the Verb) and object
names (unless a Name clause has been used). If these contain special
characters, the player cannot enter them.

4.3 Numbers

Numbers in Alan are only integers and thus may consist only of digits.

- 157

Alan Adventure System - Reference Manual

number = digit {digit}

4.4 Strings

The string is the main lexical component in an Alan source. This is how
you describe the surroundings and events to the player. Strings,
therefore, are easy to enter and consist simply of a pair of double quotes
surrounding any number of characters. The text may include newline
characters and thus may cover multiple lines in the source.

string = double_quote {any_character} double_quote

When processed by the Alan compiler, any multiple spaces, newlines
and tabs will be compressed to one single space as the formatting to fit
the screen is done automatically during execution of the game (except
for embedded formatting information, as specified in Output Statements
on page 117). You may therefore write your strings any way you like;
they will always be neatly formatted on the player’s screen. You can use
special codes (see String Statement on page 118 for a list) to indicate
(but not precisely control) the formatting.

Note: As strings may contain any character, a missing double
quote may lead to many seemingly strange error messages.
If the compiler points to the first word after a double quote
and indicates that it has deleted a lot if IDs (identifiers),
this is probably due to a missing end quote in the previous
string.

158 -

Alan Adventure System - Reference Manual

Note: To get a double quote within strings repeat it ("The sailor
said ""Hello!"".").

4.5 Filenames

It is possible to write one adventure using many source files, having
different parts in different files, and thus giving an opportunity for some
rudimentary kind of modularisation. The method for this is the import
statement.

import = ‘import’ quoted_identifier ‘.’

The import statement requires a filename, which must be given as a
quoted identifier (see section 4.2).

- 159

Alan Adventure System - Reference Manual

5 RUNNING AN ADVENTURE

5.1 A Turn of Events

The player controls the execution of an Alan adventure. Each of his
inputs are taken care of and acted upon by the run-time system in the
interpreter. The execution of an Alan adventure starts by executing the
start section. The player is then placed in the location indicated in the
start section, the location is described, and the player is prompted for a
command.

The player input is analysed according to the explicit and implicit
syntax rules and converted to an execution of verb checks and bodies.
Global verb checks and bodies are used for verbs taking no parameters,
otherwise the verb bodies are found in the parameter instances or their
classes. In case the player typed a directional command the
corresponding exit check and code is executed.

After the players command has been taken care of, all rules are
evaluated and possibly executed. Then each of the other actors executes
one step in their scripts (if active) and for each actor the rules are
evaluated again. Finally, each event that is scheduled for this round is
fired, and the rules evaluated yet again. Finally the player is prompted
for another command.

So, to summarise:

- 161

Alan Adventure System - Reference Manual

get and execute a player command
evaluate all rules
for each actor

execute one step (if active)
evaluate all rules as above

end for
for each pending event

execute it
evaluate all rules

end for

A player command may be either a verb or a direction. A verb is
executed by checking the syntax of the input, performing any
preconditions (checks) and then executing the verb bodies (as described
in Verbs and Scope on page 98). A directional command is executed by
finding any exit in that direction, evaluating the checks and the body (if
any) of that exit and locating the hero at the new location.

If the player inputs an empty command, this is equivalent to forfeiting
his turn. The empty command will simply be ignored. The events and
other actors, including turn counting, then proceeds as if the player had
input a proper input, before returning to the player prompt.

5.2 Player Input

The syntax defined in the Alan source is the basis for what the player is
allowed to input. Commands with the formats expressed in the syntaxes
form the basic statements available to the player. In addition, there are
various combinations and variations are possible using special
characters and words. The words are of course different for different
languages, but in the following generic English words, like “AND-word”,
will be used to denote all words that can be used in the same manner.
The exact list of these words for every language with built-in support is
available in Appendix E.

The following built in syntax variations are available to the player:

• Concatenating of statements using AND-words like

162 -

Alan Adventure System - Reference Manual

> open the door then enter
> take the book and read it
> west. north. east

• The use of pronouns to refer to the last object mentioned in the
previous command, e.g.

> take the book and read it
> give key to guard and ask him to open the door with it

The pronouns have to be defined by the author in his source (see
Pronouns on page 67) or by a library. The only built-in pronoun is
the IT-word, which is automatically defined on the class thing.

• References to multiple objects using AND-word. This allows

> take the blue vase and the pillow
> the red key, the glass bowl and the compass

• Reference to multiple objects using ALL-word

> drop all

• Excluding objects using a BUT-word, like:

> wear everything except the bowler hat

• The use of a THEM–word to refer to the multiple objects referenced
in the previous command, e.g.

> remove the hat and the scarf then drop them

The reference to multiple objects (or actors) in a position is only
possible if the adventure author has allowed it by using a multiple
indicator in the syntax definition (see Syntax Definitions on page 90).
All the variations above are built in and handled automatically by the
run-time system.

- 163

Alan Adventure System - Reference Manual

The interpreter also automatically restricts parameter references to
things reachable according to the semantic rules of each built-in base
class (see Instances on page 54 for the complete details). For example
objects are only possible to refer to if they are present at the current
location, except if the syntax for the command uses the omnipotent ‘!’
indicator (see Syntax Definitions on page 90 for details). For some hints
on ways to allow the player to refer to objects and actors that are not at
the current location, refer to Distant & Imaginary Objects on page 186.

If the player uses ALL instead of a reference to an instance in his
command, the verb will be applied to all appropriate instances at the
current location, except the ones that do not pass all checks for the verb
(see Verbs on page 99 for further details on this).

A restriction placed on the player input by the interpreter is that the
words the player is allowed to use can only contain alphanumeric
characters, underscores and dash. This must be kept in mind when
naming verbs that use the default syntax (an explicit Syntax statement
can always specify other player words to trigger the verb).

5.3 Run-time Contexts

When the player enters a command, the Alan run-time system evaluates
the various constructs from the adventure description (source) as
described above. Depending on the player’s command evaluation of
different parts of the adventure may be triggered. These parts all have
different conditions under which they are evaluated and have different
contexts. Four different execution contexts can be identified:

• Execution of a verb. During the execution of a verb (the syntax
and verb checks and the verb bodies), which is the result of the
player entering a command that was not a directional command,
parameters are defined and may be referenced in the statements
and expressions. In addition, the Current Actor is set to the hero

164 -

Alan Adventure System - Reference Manual

and Current Location to the location where the hero is (Here
refers to the location of the hero).

• Execution of descriptions. These are started as the response to a
directional command, a Look or Describe statement, or a Locate
statement operating on the hero. During this, no parameters are
defined, Current Actor is set to the hero, and Current
Location of course to the location being described. The
description clauses for objects and locations, as well as the
Entered clause of locations, are evaluated in this context.
Entered clauses are executed for all actors entering a location
with Current Actor set to the moving actor.

• Execution of actors. When an actor performs his script step there
are no parameters defined but Current Actor is set to the actor
currently executing. Current Location is set to that of the
executing actor (Here refers to where the executing actor is).

• Execution of events, no parameters and no actor is defined. The
location is set to where the event was scheduled to execute.

• Execution of rules. Rules are executed without location, so neither
parameters, Current Location or Current Actor is defined. Any
output statement will in this context be completely useless since the
hero can never be at the same location as the execution of the rule.

So, the execution of various parts of the adventure source can also be
said to have a number of different focuses, meaning where the action is
considered to take place:

• The hero - the actions of the player are always focused on the hero
and the actions performed are always related to where the hero is

• An actor - steps executed by an actor are always focused where
the actor is

• An event - code executed in events are focused where the event
was specified to take place

- 165

Alan Adventure System - Reference Manual

• A rule - rules are executed after each actor (including the hero)
and after each event with the focus set to the complete game world

5.4 Moving Actors

The main way to move the hero is through the exits (see Exits on page
87). They are executed if the player inputs a directional command, i.e. a
word defined as the name for an exit in any location. First, the current
location is investigated for an exit in the indicated direction, if there is
none an error message is printed. Otherwise, that exit is examined for
Checks, which are run according to normal rules (see Verb Checks on
page 101). If there was no Check or if the check passed the statements in
the body (the Does-part) is executed. The hero is then located at the
location indicated in the exit header, which will result in the description
of the location (by executing the Description-clause of the location)
and any objects or actors present (by executing their Descriptions,
explicit or implicit).

When any actor (including the hero) is located at a location, the
Entered clause of that location is executed as if the actor had moved
into that Location. The actor that was moved will be the Current
Actor even if the movement was not caused by him (but the result of an
event, for example). Therefore, this is also the last step in the sequence
of events caused by locating the hero somewhere.

5.5 Undoing

A player might occasionally regret a command that he gave, perhaps
realising that it was not the correct one. The Alan interpreter supports
such undoing of commands. This means that the player can backup
commands that (s)he later regretted. The interpreter stores each game
state as soon as it has changed and an undo command resets the game

166 -

Alan Adventure System - Reference Manual

state to the last saved one. This works completely automatically and as
many states as memory permits is saved, giving almost unlimited undo
capability.

The player command to restore a previous game state is handled directly
by the interpreter. It must consist of the single word undo.

5.6 Scripting and Commenting

Most versions of the Alan interpreter, Arun, supports both taking a
transcript of a game in progress and playing it back as input to the
interpreter.

This is very convenient during development of a game where you can
play through the game up to a point and start from there, or even
automatically test your game.

To make Arun read input from a script file you can use the special
command character ‘@’, which should be followed by the name of the
text file in which your commands are listed.

You can add comments to each line in a script file. The interpreter will
not read beyond a semicolon, ‘;’, so anything after it can be seen as a
comment. Note that this also works for direct player input.

- 167

Alan Adventure System - Reference Manual

6 HINTS AND TIPS

This chapter will give you some ideas about how the various features of
Alan may be used to implement common features in an adventure game.
These are only suggestions and you are, of course, welcome to invent
your own, but these are probably some ideas that can get you started.

Using the import mechanism of the Alan language (see Import on page
52) you can reuse snippets that you invent in multiple games or works.
By building such a library you don't have to reinvent the same thing
every time.

A very easy way to get a lot of functionality, and learn about using the
language, is to use the Alan standard library. You you can download it
from the Alan Home Pages. It implements many of the things described
below, and loads of other handy things for you to use directly. For
details on how to use that library, refer to its documentation.

Note: The following examples, hints and tips does not use any
library, only plain vanilla Alan code.

6.1 Use of Attributes

Attributes are primarily used for holding status information about the
instance to which it belongs. This allows, for example, a water bottle to
contain three levels of water.

- 169

Alan Adventure System - Reference Manual

The bottle Isa object
Has level 3.
Verb drink

Does
If level Of bottle > 0 Then

“You take sip from the bottle.”
Decrease level OF bottle.

Else
"There is no more water in the bottle."

End If.
End Verb drink.

End The bottle.

Another example is the broken mirror.
The mirror Isa object

Is Not broken.
Verb break

Does
Make mirror broken.

End Verb break.
End The mirror.

The appropriate verbs defined in the instances may then modify the
attributes and thus update the status information.

Attributes defined for a whole class of instances also allow an extra
dimension of classification of the instances. If the following declaration
is made

Add To Every object
Not takeable.

then all objects receive the attribute “takeable” and unless the attribute
is specifically redeclared for a particular instance they will not be take-
able. Note however that the semantic meaning (what actually happens,
such as preventing the “taking”) of “takeable” must be implemented e.g.
in the verb “take”:

Verb take
Check Object Is takeable

Else "You can’t take the $o."
Does

Locate Object In inventory.
End Verb take.

170 -

Alan Adventure System - Reference Manual

In the same way restrictions concerning what is possible to eat, drink,
open etc. may be implemented. This use of attributes to classify
instances is “action- oriented”, i.e. they imply that a particular action
(verb) is applicable to the instance.

An alternate approach is to use attributes to classify instances after their
characteristics. Consider:

Verb take
Check o Is Not heavy

Else "That is much too heavy."
And o Is Not animal

Else "$+1 moves quickly away, just far enough
for you not to reach it."

Does
Locate o In hero.
"You take" Say The o. "."

End Verb take.

With this approach you need to keep track of which properties a
particular verb will accept or require. This could be extended one step
further, having verbs check actual dimensions, such as weight or size,
instead.

An while we are talking about classification, the Alan 3 class concept
can help. Often a classification can be made, clearly and succinctly, by
defining a sub-class, for which every property pertaining to that type of
instances can be collected. Often, the need for an attribute disappears.

Further more, you don't need to define a syntax for a single parameter
verb if it only accepts instances from a particular class. Consider the
following definitions:

Every vehicle Isa object
End Every vehicle.

Every car Isa vehicle
 Verb drive
 Does "Yoooohooooo!"
 End Verb.
End Every car.

Every bus Isa vehicle

- 171

Alan Adventure System - Reference Manual

End Every bus.

The car1 Isa car At l
End The car1.

The bus1 Isa bus At l
End The bus1.

Without any syntax definition what so ever, Alan will supply a default
syntax for the drive verb which restricts the use of it to only instances of
car:

L
There is a car1 and a bus1 here.

> drive bus1
You can't do that.

> drive car1
Yoooohooooo!

So the class mechanism not only allows for another way to classify your
instances, but also makes it much easier to get player input handled
correctly.

6.2 Descriptions

Attributes come in handy when presenting information about instances
to the player. The attributes can be tested in If-statements to modify the
Descriptions and possibly even the short description in the Mentioned
sections.

For example:
The mirror Isa object

Is Not broken.
Description

"On the wall there is a beautiful mirror with an
 elaborate golden frame."
If mirror Is broken Then

"Some moron has broken the glass in it."
End If.

Verb break

172 -

Alan Adventure System - Reference Manual

Does
Make mirror broken.

End Verb break.
End The mirror.

If you also use this feature with the short descriptions will make the
adventure feel a bit more consistent.

The bottle Isa object
Has level 3.
Article ""
Mentioned

If level Of bottle > 0 Then
"a bottle of water"

Else
"an empty bottle"

End IF.
End The bottle.

If the bottle had level 0 and was in the hero's container, this would result
in

> inventory
You are carrying an empty bottle.

6.3 Common Verbs

As your library of adventures grow you will find that some verbs are
often needed, and always function the same way. Examples are “take”,
“drop”, “invent”, “look”, “quit” and so on. It is advisable to put them in
a file which may then be imported into your games. See section 3.4
Import on page 52 about the import mechanism. The files may then
containing these common verbs as well as their syntax definitions and
any synonyms. Attributes needed for these particular verbs could also be
placed in a default attribute declaration in this file.

All your adventures may then import this file (or files), making these
features immediately accessible when you start a new adventure. All

- 173

Alan Adventure System - Reference Manual

that this takes is some thought as to what names to use for the attributes
as discussed in Use of Attributes on page 169.

And of course there is already an extensive library available from the
Alan website, http://www.alanif.se. It also includes a lot of other
features common to most adventure games.

6.4 Distant Events

An effect of the feature that output is not visible unless the hero is
present, is that the description of an event might not always be presented
to the player.

Event explosion
"A gigantic explosion fills the whole room with smoke

and dust. Your ears ring from the loud noise. After
a while cracks start to show in the ceiling,
widening fast, stones and debris falling in
increasing size and numbers until finally the
complete roof falls down from the heavy explosion."

Make Location destroyed.
End Event.

If the hero isn’t at the location where the event is executed, he will
never know anything about what has happened. The solution is to create
an event that goes of where the hero is.

Event distant_explosion
"Somewhere far away you can hear an explosion."

End Event.
...
If Hero Nearby Then

Schedule distant_explosion At Hero After 0.
...

6.5 Doors

A common feature in adventure games is the closed door. Here’s one
way implement it:

174 -

http://www.alanif.se/

Alan Adventure System - Reference Manual

The treasury_door Isa object At hallway
Name treasury door
Is Not open.
Verb open

Does
Make treasury_door open.
Make hallway_door open.

End Verb open.
End The treasury_door.

The hallway Isa location
Exit east To treasury

Check treasury_door Is open
Else "The door to the treasury is closed."

End Exit.
End The hallway.

The hallway_door Isa object At treasury
Name hallway door
Is Not open.
Verb open

Does
Make treasury_door open.
Make hallway_door open.

End Verb open.
End The hallway_door.

The treasury Isa location
Exit west TO hallway

Check hallway_door Is open
Else "The door to the hallway is closed."

End Exit.
End The treasury.

Note that we need two doors, one at each location, but they are
synchronised by always making them both opened or closed at the same
time. The check in the Exits makes sure that the hero cannot pass
through a closed door.

6.6 Questions and Answers

Sometimes it may be necessary to ask the player for an answer to some
question. One example is if you want to confirm an action. The

- 175

Alan Adventure System - Reference Manual

following example delineates one simple way to do this, which could be
adopted for various circumstances.

The hero Isa actor
Is Not quitting.

End The hero.

Syntax
'quit' = 'quit'.
yes = yes.

Synonyms
y = yes.
q = 'quit'.

Verb 'quit'
Does "Do you really want to give up?

Type 'yes' to quit, or to carry on just
type your next command."

Make hero quitting.
Schedule unquit After 1.

End Verb 'quit'.

Verb yes
Check hero Is quitting

Else "That does not seem to answer any question."
Does Quit.

End Verb yes.

Event unquit
Make hero Not quitting.

End Event unquit.

6.7 Actors

Actors are vital components to make a story dynamic. They move
around and act according to their scripts. To make the player aware of
the other actor’s actions they need to be described. This must be done so
that the player always get the correct perspective on the actions of the
actors.

A way to ensure this is to rely on the fact that output statements are not
shown unless the hero is at the location where the output is taking place.

176 -

Alan Adventure System - Reference Manual

This means that for every actor action, especially movement, you need
to first describe the actions, then let the actor perform them and, finally,
possibly describe the effects.

An example is the movement of an actor from one location to another.
In this case the step could look something like

"Charlie Chaplin goes down the stairs to the hallway."
Locate charlie_chaplin At hallway.
"Charlie Chaplin comes down the stairs and
 leaves the house through the front door."
Locate charlie_chaplin At outside_house.
"Charlie Chaplin comes out from the nearest house."

An actor is described, for example, when a location is entered or as the
result of a Look, in the same way as objects are. This means that a good
idea is to include the description of an actor’s activities in the
description of him. One way to do this would be to use attributes to
keep track of the actors state and test these in the description clause.

The george Isa actor
Name George Formby
Is

Not cleaning_windows.
Not tuning.

Description
If george Is cleaning_windows Then

"George Formby is here cleaning windows."
Elsif george Is tuning Then

"George Formby is tuning his ukelele."
Else

"George Formby is here."
End If.

...

Although quite feasible, this is a bit tedious. As, at least a part of, the
state is indicated by the script the actor is executing, this could be used
to avoid the potentially large If-chain. The optional descriptions tied to
each script will be executed instead of the main description when the
actor is following that script. So this would allow us to simplify to:

The george Isa actor
Name George Formby
Description

- 177

Alan Adventure System - Reference Manual

"George Formby is here."
Script cleaning.

Description
"George Formby is here cleaning windows."

Step
...

Script tuning.
Description

"George Formby is tuning his ukelele."
Step

...
...

This makes it easier to keep track of what an actor is doing. Another
hint here is to describe the change in an actor’s activities at the same
time as executing the Use statement, like

Event start_cleaning
Use Script cleaning For george.
"All of a sudden, George starts to clean the windows."

End Event.

This makes the descriptions of changes to be shown when it takes place
and the description of the actor is always consistent. You can, of course,
still have attributes describing the actor’s state to customize the
description of the actor on an even more detailed level, but it generally
suffices to describe an actor in terms of what script he is executing.

6.8 Vehicles

The current version of Alan does not support actors being inside
containers or inside other actors, which could be a straight forward way
to implement vehicles. However, as the reader/player does not need to
know how the output is generated we can use a location and a row of
events to substitute for the vehicle.

Let's start with the geography:

178 -

Alan Adventure System - Reference Manual

The garage Isa location
End The garage.

The parking_lot Isa location Name 'Large Parking Lot'
End The parking_lot.

Then we need the actual car:
The car Isa object Name little red sporty ferrari Name car

At garage
Is Not running.
Has position 0.

Verb enter
Does

Locate hero At inside_car.
End Verb enter.

End The car.

We also need a description of the inside of it. We will use another
location for this:

The inside_car Isa location Name 'Inside the Ferrari'
Description

"This sporty little red vehicle can really take you
places..."

Exit out TO inside_car
Check car Is Not running

Else "I think you should stop the car before getting
out..."

Does
Depending On position Of car

= 0 Then Locate hero At garage.
= 1 Then Locate hero At parking_lot.
--- Etc.

End Depend.
End Exit.
Verb drive

Check car Is Not running
Else "You are already driving it!"

Does
Make car running.
If car At garage Then Schedule drive_to_parking After 0.
Else Schedule drive_to_garage After 0.
End If.

End Verb drive.

Verb park

- 179

Alan Adventure System - Reference Manual

Check car Is running
Else "You are not driving it!"

Does
"You slow to a stop and turn the engine off."
Make car Not running.
Cancel drive_to_parking. Cancel drive_to_garage.

End Verb park.
End The inside_car.

We must make sure that the player can just say “drive” and “park” by
defining the syntax for those single word commands:

Syntax drive = drive.
Syntax park = park.

You can also see from the code above that there are (at least) two events
that need to be defined too. They handle the movement of the car from
one place to another:

Event drive_to_parking
"You drive out from your garage and approach a large

parking lot."
Set position Of car To 1.
Locate car At parking_lot.
Schedule drive_to_garage After 1.

End Event drive_to_parking.

Event drive_to_garage
"You drive out from the parking lot and approach your own
 garage."
Set position Of car To 0.
Locate car At garage.
Schedule drive_to_parking After 1.

End Event drive_to_garage.

The main idea is that the player/reader is inside the car, and the events
are executed at this location thus emulating movement.

There is a multitude of solutions for this problem. One possibility is to
exchange the car object for an actor and the events for script steps.
However, in this solution the car object is not where the hero is
(’inside_car’) so the output from the scripts for the car will not
automatically be shown to the player. There are (at least) two different

180 -

Alan Adventure System - Reference Manual

ways to deal with this (one involving attributes, the other involving an
extra object), but the solutions are left as an exercise to the reader!

As Alan allows nesting locations (locating a location at another as if it
was an object or actor), yet another solution would be to actually move
the car location between the garage and the parking lot.

Sincere thanks go to Walt (sandsquish@aol.com) for inspiring
communication that brought this example to life.

6.9 Floating Objects

Floating objects is a term used for objects that are available everywhere,
or at least at many places. Usually they are available wherever the hero
is, and we want to avoid creating duplicate objects, so in a way we make
them float along with the hero, or some other actor, instead.

Body Parts
One example of floating objects is the various parts of the hero's body.

To create floating objects you can use a particular feature of entities,
namely the fact that they are always located where the hero is. Such an
entity can of course have the container property to allow it to contain a
number of other instances.

So to have the hero’s body parts available wherever the hero goes you
can use:

The body_parts Isa entity
Container

End The body_parts.

The right_arm Isa object Name right arm In body_parts ...
The head Isa object Name head In body_parts ...

Using entity containers is also a simple way to create other
compartments on the hero, such as a belt.

- 181

Alan Adventure System - Reference Manual

The belt Isa entity
Container

Header
If Count In hero > 0 Then "and"
Else "but" End If.
"in your belt you have"

Else
""

End The belt.

You can combine that with the following definitions of the hero and the
'invent' verb:

The hero Isa actor
 Container
 Header "You are carrying"
 Else "You are empty-handed"

If Count In belt = 0 Then "." End If.
End The hero.

Verb invent
Does

List hero.
List belt.

End Verb invent.

And the following output could result:

> invent
You are empty-handed but in your belt you have a knife.

Note: The example use the count aggregate to see if the other
container is empty or not, and select appropriate output
depending on that.

Outdoors and Indoors
Another example of floating objects are semi-abstract objects like the
air, the ground and walls. Some of these also have the extra complexity
that they should be available only under certain conditions.

182 -

Alan Adventure System - Reference Manual

Of course, you would not want outdoor things to be available when you
are indoors. To solve this, simply create yet another container object
where we can store the outdoor things when they should not be
accessible and place it where the hero can never be. Now we only need
to make sure that the objects are transferred between the two storages:

The outdoor_things Isa entity
Container

End The outdoor_things.

The outdoor_things_storage Isa object At limbo
Container

End The outdoor_things_storage.

The air Isa object In outdoor_things_storage ...
The sky Isa object In outdoor_things_storage ...

When location Of hero Is outdoors =>
Empty outdoor_things_storage In outdoor_things.

When location Of hero Is Not outdoors =>
Empty outdoor_things In outdoor_things_storage.

You need to add the boolean attribute “outdoors” to every location to
the make the rules work, of course.

And Voilà’, every time the hero arrives at an outdoor location he will
find the air and the sky. And every time he enters a location that has the
attribute outdoors set to false he will not find them available.

Well, perhaps he would like to have the air available indoors too, but
that is left as an exercise for the reader!

Note: An alternative to the location attribute, is to use classes.
Define an outdoor_location class and an indoor_location
class. Then inherit as appropriate, and the rules could
instead look like:

When location Of hero Isa outdoors_location => ...
When location Of hero Isa indoors_location => ...

- 183

Alan Adventure System - Reference Manual

Nested Locations as a Solution
Yet another option would be to make use of the nested locations feature.
Put all your outdoor locations in a outdoor location where the
outdoor_storage entity is also present (this is just a hint):

The outdoor_region Isa location
End The outdoor_region.
The park Isa location At outdoor_region
End The park.

Then the outdoor items can stay at this “region” location, no need for
rules or extra containers.

6.10 Darkness and Light Sources

A very common puzzle in old time adventures (so much so that it has
possibly been exploited beyond its potential) is the problem of dark
locations and finding a source of light.

Darkness and light sources can be implemented in Alan in different
ways. Again we basically have the choice between attributes and
classes. The solutions are both general and rather similar so we will
have a look at the solution using attributes and leave the other solution
to the reader. (A good exercise to really understand the Alan class
concept, so please take a stab at it. If you want to have a look at one
solution, you can study the Alan standard library, which uses classes to
implement light sources.)

First we need an attribute that all objects have. We know we only need
to consider objects because light sources need to be transported by the
player, so they can not just be anywhere, like entities.

Add To Every object
Is

Not lightsource.
End Add To.

184 -

Alan Adventure System - Reference Manual

This ensures that all objects have the boolean (true/false valued)
attribute lightsource with the default not being a light source. Any
object that provides light need to explicitly state that they are instead.
For some instances this attribute might change value dynamically, e.g.
when the lamp is lit and extinguished.

Locations then must declare themselves as lit or not:
Add To Every location
 Is lit.
End Add To.

Here we assume most locations are lit, dark locations need to declare
themselves Not lit.

We can now count the number of instances at the current location
having the attribute lightsource set and if there are one or more there
is some light provided. So, the look verb could be reworked to:

Verb 'look'
 Check Current Location Is lit
 Or Count Isa object, Is lightsource, Here > 0
 Else
 "You cannot see anything without any light."
 Does
 Look.
End Verb.

The check of the look verb now checks the current locations need for
light and then counts instances of object, that are light sources and
present, to see if there is light.

Of course, we must also modify the dark locations so that they don't
display their descriptions upon entrance. This is easy to do using
another addition to every location, a description check, similar to the
check in the look verb:

Add To Every location
 Description
 Check Current Location Is lit
 Or Count Isa object, Is lightsource, Here > 0

- 185

Alan Adventure System - Reference Manual

 Else
 "You cannot see anything without any light."
End Add To.

6.11 Distant & Imaginary Objects

Sometimes you need to make it possible for the player to refer to things
either far away, that are not really objects or that may be at many places
at once. Examples of these are a distant mountain that may be examined
through a set of binoculars, the melody in “whistle the melody”, and
water or walls. One way of handling this is to use entities, since they are
“everywhere”. But sometimes you need better control over when they
are available and when not.

A Mountain
For objects that need to be visible from a distance, the easiest method is
to introduce a ‘shadow object’. This is a second object acting on behalf
of, or representing, the distant object at the locations where it should be
possible to refer to it. For example:

The hills Isa location
:

End The hills.

The mountain Isa object At hills
:

End The mountain.

The scenic_vista Isa location Name Scenic Vista
End The scenic_vista.

The shadow_mountain Isa object AT scenic_vista
Name distant mountain
Description

"Far in the distance you can see the Pebbly
Mountain raising towards the sky."

End The shadow_mountain.

This would allow for example at scenic_vista:

186 -

Alan Adventure System - Reference Manual

Scenic Vista.
Far in the distance you can see the Pebbly Mountain raising
towards the sky.

> look at mountain through the binoculars
...

If the mountain must be visible and possible to manipulate from a
number of locations, you might implement one shadow object for each
location, but this might become a bit tedious if they are many. If they
are identical you can use a simple rule like the following:

When hero At scenic_vista Or hero At hill_road =>
Locate shadow_mountain At hero.

This will ensure that whenever the hero moves to any of the places from
where the mountain is visible, the shadow_mountain is sure to follow.
However, as the rules are executed after the hero already has moved, a
better strategy might be to make the shadow_mountain ‘silent’, i.e. to
have no description. Instead, the description of it should then be
embedded in the description of the adjacent locations. Yet, another
possibility would be to move the pseudo-object around using statements
in the exits, like

The scenic_vista Isa location Name Scenic Vista
Exit east To path

Does
Locate shadow_mountain At path.

End Exit east.
End The scenic_vista.

Regardless of which of these strategies you chose, you need to take care
that the shadow object is not present when the real object is. In this
particular case, it should not be moved to the hills.

The Melody
To allow the player to 'whistle the melody' for example, there are two
different tactics that can be applied. One choice is to make the melody

- 187

Alan Adventure System - Reference Manual

an entity (or some subclass thereof that you have defined), because, as
we have seen, those can be manipulated from everywhere:

The melody Isa entity ...
Syntax 'whistle' = 'whistle' (m) ...

The other route would be to make it an actual object. In this case the
syntax for the whistle verb would need to indicate omnipotence,
meaning that the player can refer to instances (even those inheriting
from object) to be used as parameters even from afar.

The melody Isa object ...
Syntax 'whistle' = 'whistle' (m)! ...

The melody then does not have to be reachable, near or even be at any
location at all, for the player to be able to refer to it.

In both cases you would most likely need to restrict the parameters for
the syntax so that the player can't 'whistle the chair'. Which of the two
strategies you would chose greatly depends on things like:

• are there many things that this applies to (many 'melodies',
perhaps)?

• should the player be able to manipulate this instance in other
ways?

• do you need many different entities for various purposes?

6.12 Using Events as Functions

<to be supplied>

6.13 Structure

A good thing to do when designing an interactive fiction story is to
separate the geography from the story. In Alan, you can use the import

188 -

Alan Adventure System - Reference Manual

facility to structure your Alan source. One approach could be to place
the description of each location in a separate file together with any
objects that could be considered part of the scenery or at least is not
only a tool in a puzzle. These files can then be included in a ’map’ file,
which in turn is included by the top-level file.

The story line can be divided into files too, one for each ’scene’. A
scene being comments describing the important things that are suppose
to happen, any prerequisites and objects, events, rules etc. which are
specific for this part of the story.

This strategy will both give you a better structure of your adventure as
well as help you design a better story, much like the storyboarding
technique used in making movies or plays.

6.14 Debugging

Occasionally your Alan code is flawed and you really can’t understand
what is actually happening. To aid in discovering which part of your
code is run when, the interpreter Arun incorporates some features for
debugging. There are a few debugging switches available when starting
the interpreter from the command line:

-c Log the commands input by the player
-l Log a complete transcript of the game
-t<n> Enable trace mode (<n> = level 1,2,3 or 4)
-d Start the debugger

Note: None of the above switches can be used unless the adven-
ture was compiled with the debug option set (see Options
on page 47).

- 189

Alan Adventure System - Reference Manual

Command Logs and Game Transcripts
For various purposes, such as debugging, an actual log of the player
commands can be handy. Such a log is created if the option -c is given
to the interpreter when starting a game. The log files are created in the
directory, which was current when the interpreter was started, the name
of the log file will begin with the game name and have the extension
.log.

A command log can on some systems be used as input to the interpreter,
and thus automate the execution of the exact player experience.

You can only activate one of the logs in a single session.

Interpreter and Instruction Trace
Trace mode can also act as an aid in debugging. Level 1 will print
information about every invocation of the instruction interpreter,
making it easier to see which parts of the code are being executed.

Trace level 2, single instruction trace, will also trace every single Acode
instruction. The Acode is based on a stack machine but single
instruction trace will not show all stack operations. Level 3 shows the
execution of these also. Level 4 dumps the content of the stack for every
instruction.

Debug mode
Finally, and usually most useful, there is the debug mode. If the
interpreter is started with this option, it will execute the start up
sequence and then prompt for a debug command with

abug>

Using the Debugger
Abug may also be entered during the execution of an adventure. To do
this you issue the single player command (type it at the game prompt)

190 -

Alan Adventure System - Reference Manual

> debug

The game must have been compiled with the debug option or the
command will be sent to the game which probably does not recognize it.

Typing a question mark or ‘help’ in response to the debug prompt will
give a brief listing of the commands available in Abug:

 break [file:[n]] -- set breakpoint at source line [n] in
 [file]

 delete [file:[n]] -- delete breakpoint at source line [n]
 in [file]

 files -- list source files
 events -- show events
 classes -- show class hierarchy
 instances [n] -- show instance(s)
 objects [n] -- show instance(s) that are objects
 actors [n] -- show instance(s) that are actors
 locations [n] -- show instances that are locations
 trace ('source'|'section'|'instruction'|'push'|'stack')
 -- toggle various traces
 next -- execute to next source line
 go -- go another player turn
 exit -- exit debug mode and return to game,

 enter again using 'debug' as input
 x -- d:o
 quit -- quit game

Note: Any command may be abbreviated as long as it is
unambiguous. Typing 'b' for 'break' will work, for example.

The display commands, actors, locations, objects and events, may
optionally be followed by a number. Abug will then display detailed
information about the entity requested, such as values of attributes, its
present location etc. Currently there is no way to modify anything using
Abug.

- 191

Alan Adventure System - Reference Manual

You can run the adventure to the next source line by using the next
command. If the source file is available, the interpreter will also show
the source line.

Breakpoints can be set on a source line. Enter the break command
followed by the number of the source line. Alan allows the source to be
separated into multiple files, so the interpreter always indicate which
file the source line is in, e.g. when hitting a breakpoint or stepping to the
next source line. When setting a breakpoint the current file is always
assumed. You can currently set a breakpoint in another source file by
preceding the line number with the file name delimited by a colon.

Breakpoints can be deleted. The delete command without a line
number will remove any breakpoint at the current line. You can specify
which breakpoint to delete by giving the line number (and optionally the
file name).

Note: The debugger knows on which source lines it is possible to
place a breakpoint. If you attempt to put a breakpoint at
some line where it is not possible, it will attempt to place
one a line which is numerically higher but as close a
possible. This will sometimes cause a breakpoint to be
placed in a context that will not be what you expected.

The trace command and its options corresponds to the types of traces
described in the section on Command Logs and Game Transcripts
above.

Wherever different output styles are available, e.g. in GLK based
interpreters like WinArun, the Alan debugger tries to use them to
distinguish the debugger output from the output of your game by using
the pre-formatted style (see the section on styles in Output Statements
on page 117).

192 -

Alan Adventure System - Reference Manual

The following is a short excerpt from a debugging session (user input in
italics, game input/output in bold face):

<Arun, Adventure Interpreter version 3.0beta1 (2010-12-19
16:26:05)>

<Version of 'saviour.a3c' is 3.0beta1>
<Hmm, this is a little-endian machine, fixing byte ordering....
OK.>
<Hi! This is Alan interactive fiction interpreter Arun, version
3.0beta1 !>

adbg> n

adbg: Stepping to saviour.alan:1346
<01346>: "$pWelcome to the game of SAVIOUR!$pIn this game
your mission
adbg> n

Welcome to the game of SAVIOUR!

<<Game output deleted for breivity>>

adbg: Stepping to saviour.alan:1354
<01354>: Show 'logo.png'.
adbg> n

adbg: Stepping to saviour.alan:1355
<01355>: "$iVisit the Alan Home Pages at:"

adbg> break 1357
Line 1357 not available, breakpoint instead set at
saviour.alan:1358
<01358>: Visits 2.

adbg> g

 Visit the Alan Home Pages at:

 http://www.alanif.se
adbg: Breakpoint hit at saviour.alan:1358
<01358>: Visits 2.
adbg> n

Outside The Tall Building

adbg: Stepping to saviour.alan:318

- 193

Alan Adventure System - Reference Manual

<00318>: "To the north is a tall ancient building with a
large entrance.
adbg> n
To the north is a tall ancient building with a large entrance. On
the top there is a clock tower. Most of the windows in the
building are broken, and a sign with three oval objects are
hanging lose from the wall.

> north
adbg: Stepping to saviour.alan:325
<00325>: Score 5.
adbg> ?
Alan 3.0beta1 -- Adventure Language System (2010-12-19 16:26)
ADBG Commands (can be abbreviated):
 help -- this help
 ? -- d:o
 break [file:[n]] -- set breakpoint at source line [n] in
[file]
 delete [file:[n]] -- delete breakpoint at source line [n] in
[file]
 files -- list source files
 events -- show events
 classes -- show class hierarchy
 instances [n] -- show instance(s)
 objects [n] -- show instance(s) that are objects
 actors [n] -- show instance(s) that are actors
 locations [n] -- show instances that are locations
 trace ('source'|'section'|'instruction'|'push'|'stack')
 -- toggle various traces
 next -- execute to next source line
 go -- go another player turn
 exit -- exit to game, enter 'debug' to get back
 x -- d:o
 quit -- quit game
adbg> trace section
Section trace on.
adbg> n

<EXIT north[1] from Outside The Tall Building[4], Moving:>

<ENTERED in class entity[1] is empty>

<ENTERED in class location[2] is empty>

<ENTERED in instance Hall[5] is empty>

Hall

194 -

Alan Adventure System - Reference Manual

adbg: Stepping to saviour.alan:332
<00332>: "Inside the entrance is a hallway full of dust
and pieces of
adbg> instances
Instances:
 1: #nowhere
 2: pseudowords (container), at #nowhere [1]
 3: nowhere
 4: Outside The Tall Building
 5: Hall
 6: door, at Hall [5]
 7: Stairs
 8: cellar
 9: rats, at cellar [8]
 10: store
 11: spool of computer tape, at store [10]
 12: First Floor
 13: old book, at First Floor [12]
<<list abbreviated>>
adbg> instance 13
The old book [13] Isa object[4]
 Location: at First Floor [12]
 Attributes:
 Takeable[2] = 1
 Readable[3] = 1
 openable[4] = 0
 startable[5] = 0
 examinable[6] = 1
adbg> g
Inside the entrance is a hallway full of dust and pieces of the
ceiling has fallen to the floor. At the west end is a staircase,
and to the south is the exit. To the east is a folding door. It
is closed.

> west

<EXIT west[3] from Hall[5], Moving:>

<ENTERED in class entity[1] is empty>

<ENTERED in class location[2] is empty>

<ENTERED in instance Stairs[7] is empty>

Stairs
You are at the landing of an old staircase. It seem steady enough
to walk in, but be careful if you are going to use it. There is a

- 195

Alan Adventure System - Reference Manual

passage leading up, and another leading down into a dark cellar.
To the east is the hallway. A strange smell emerges from below.

> up

<EXIT up[5] from Stairs[7], Moving:>

<ENTERED in class entity[1] is empty>

<ENTERED in class location[2] is empty>

<ENTERED in instance First Floor[12] is empty>

First Floor
The landing on the first floor is as dirty as all the others.
Meters and meters of old cables are laying around, leading into a
room to the east. The stairs leads up and down. They still seem
alright. Through the dirty windows the barren field outside the
building can be seen. Almost completely covered by dust, there is
an old book laying on the floor here.

> take book and read it

<VERB 21, in parameter object(#1)=old book[13], inherited from
object[4], CHECK:>

<VERB 21, in parameter object(#1)=old book[13], inherited from
object[4], DOES:>
Taken.

<VERB 5, in parameter object(#1)=old book[13], inherited from
object[4], CHECK:>

<VERB 5, in parameter object(#1)=old book[13], DOES:>
As you carefully try to open the book it falls apart into dust
and falls
to the floor through your fingers.

> debug
adbg> instance 13
The old book [13] Isa object[4]
 Location: at nowhere [3]
 Attributes:
 Takeable[2] = 1
 Readable[3] = 1
 openable[4] = 0
 startable[5] = 0
 examinable[6] = 1

196 -

Alan Adventure System - Reference Manual

adbg> trace instruction
Single instruction trace on.
adbg> n
> north

++
1dbd: PRINT 10037, 22 "You can't go that way."
1dbe: RETURN
--

> west

++
1dbd: PRINT 10037, 22 "You can't go that way."
1dbe: RETURN
--

> east

<EXIT east[2] from First Floor[12], Moving:>

<ENTERED in class entity[1] is empty>

<ENTERED in class location[2] is empty>

<ENTERED in instance office[14] is empty>

++
 e82: LINE 0, 0
 e85: PRINT 3479, 6 "Office"
 e86: RETURN
--

++
 e89: LINE 0, 598
adbg: Stepping to saviour.alan:598
<00598>: "In front of you is a deserted office area.
Desks and chairs
adbg> g

 e8c: PRINT 3485, 404 "In front of you is a
deserted office area. Desks and chairs are piled up in one
corner. The ventilation system has partly fallen to the floor,
tearing part of the ceiling down with it. Under the twisted
tubing a couple of old coffee makers are crushed to pieces. One
shelf, having some kind of lettering, no longer readable, is
thrown to one side, and another is still standing in a corner,
full of dust."

- 197

Alan Adventure System - Reference Manual

 e8d: RETURN
--

++
 ec3: LINE 0, 616
 ec6: ATTRIBUTE 15, 17 =0
 ec7: NOT FALSE =TRUE
 ec8: IF TRUE
 ecb: LINE 0, 617
 ece: PRINT 3711, 43 " There is a ladder
laying on the floor here."
 ecf: ELSE
 :
 ee1: RETURN
--

> look

<VERB 19, GLOBAL, DOES:>

++
 71c: LINE 0, 199
 71d: LOOK
++
 e82: LINE 0, 0
 e85: PRINT 3479, 6 "Office"
 e86: RETURN
--

++
 e89: LINE 0, 598
 e8c: PRINT 3485, 404 "In front of you is a
deserted office area. Desks and chairs are piled up in one
corner. The ventilation system has partly fallen to the floor,
tearing part of the ceiling down with it. Under the twisted
tubing a couple of old coffee makers are crushed to pieces. One
shelf, having some kind of lettering, no longer readable, is
thrown to one side, and another is still standing in a corner,
full of dust."
 e8d: RETURN
--

++
 ec3: LINE 0, 616
 ec6: ATTRIBUTE 15, 17 =0
 ec7: NOT FALSE =TRUE
 ec8: IF TRUE
 ecb: LINE 0, 617

198 -

Alan Adventure System - Reference Manual

 ece: PRINT 3711, 43 " There is a ladder
laying on the floor here."
 ecf: ELSE
 :
 ee1: RETURN
--
 71e: RETURN
--

> q

In the instruction trace, lines of ’+’ characters indicates the start of
interpretation, thus they can be present inside other single step traces
(like the Look in the example above). Lines of dashes, indicates the
return from one such level of interpretation.

- 199

Alan Adventure System - Reference Manual

7 ADVENTURE CONSTRUCTION

This chapter will give a few clues on how to be a successful adventure
author, because creating a good adventure is more like writing a book
than writing a program (although Alan can be viewed as a kind of
programming language).

7.1 Getting an Idea

As with a book, the success or failure depends on how intriguing the
story is, how hooked you can get the reader (in our case the player).
Therefore, the first step must be to get a good idea. This may be hard or
easy but with time, you, like any good author, learn to pick up ideas
when you get them in ordinary every-day life, and store them for later
use.

A seemingly simple idea might also be developed into a good adventure
if it is placed in the correct setting and supplied with additional features,
tricks and problems.

When you have a good idea, try to refrain from typing it in directly in a
text editor and compile it with Alan. Instead, write the story down as if
it were the story line for a book or a movie. Where appropriate, insert
hints on various diversions and alternate paths that come to mind, but
try to stay mainly with the main story from beginning to the preferred
end. Then, let a close friend read it.

- 201

Alan Adventure System - Reference Manual

7.2 Elaborating the Story

After having rewritten the story line once or twice, start creating the
scenery. If your setting is small, you could draw a map of the locations
needed, but a better way is probably to make a list of major locations
first (those essential to the story). For each location note what important
properties the location must have and which objects are necessary (just
as notes, don’t create the Alan declarations yet!). For each object, make
a small note on why the object is needed (by the player!).

This may also be done using a scene-by-scene approach. By this, we
mean that the story is segmented into scenes (and maybe also acts) like
in a play. For each act and scene, you do the above. This makes it easier
to get an overview over a larger adventure.

I also suggest that you also create a story on a level above the actual
game, at least in your own mind. This story should explain why the
game-world exists and thus give a consistency to the text that you will
present to the player. Nobody likes an adventure without a cause. This
story or world of ideas need not be revealed to the player.

This also applies to the narrator, i.e. the imaginary person or creature
that carries out the conversation with the player. Create an image of him
or it and stick to it. Receiving comments about your (limited) progress
in the game might be funny as long as they are not out of character.

7.3 Implementing it

At last, it is time to sit down at the terminal. Divide the adventure text
into files containing global verbs, the map (possibly divided further
according to the scenes), the actors (perhaps one file for each actor) and
a main file including the other files. This makes it easy to handle the
adventure and you might ask your friend to participate in the
development by giving him a few files to work with.

202 -

Alan Adventure System - Reference Manual

First, just declare the locations and connect them with exits. Do not
work on the “purple prose” descriptions yet. The Alan system supplies
good defaults for descriptions and so on so use these while developing
the structure of the adventure. Do not bother even with the details of
making it impossible to pick up the elephant, etc.

Play the adventure continuously during the development, but do not try
the things you plan to make impossible later. Just go through it
according to the line you planned the story to follow. A hint here is to
use a separate file for the start section. In this file you can easily set up
the situation you wish to test while not having to tire yourself by
playing the adventure from the start every time.

7.4 Polishing the Adventure

There, now you have a working adventure, it’s still a bit bare bones, but
still the story plays the way you planned. Now it is time to insert all the
nice descriptions, the limitations and perhaps the extra things to divert
and hinder the hero. Just be careful not to fall into the locked-door-
syndrome. Too many adventures have been tedious to play because you
need to find-key/get-key/unlock-door- with-key/open-door (anyway,
why do people go around locking doors and throwing away the keys).
Think big.

Start by fixing the verbs so that they prohibit the impossible. Introduce
as many synonyms as you can think of, this makes the adventure so
much more playable.

Create the location descriptions. Remember to use the same style in all
your descriptions; breaking out of style does not look good in the eyes
of the adventurous. The descriptions must give the player the correct
image, the brain is still the best graphic interface available, but they
should also plant ideas in the player on how to solve the problems you
place before him.

- 203

Alan Adventure System - Reference Manual

Another thing to aim for is the feeling that a player gets when he
somehow finds information explaining things he has encountered earlier
in the game. Here, as always, it is good advice to ask a friend to read the
texts and convey his or her impressions (remember you know it all
because you wrote it!).

Lastly, fill in the adjectives for the objects, their descriptions and short
descriptions (if needed).

7.5 Beta Testing

Now you might think that you can start distributing your game. But,
wait! As any complex computer program, the game may have various
kinds of bugs. Bugs in a work of interactive fiction range from
misspellings and grammar errors in your descriptions, logic errors in
your implementation of puzzles or events or omissions in the
descriptions of surroundings that make the player miss or misunderstand
how to act, to inconsistencies in the settings or story, plots that don’t
work.

So how do you find these? Your only help are the beta testers. They are
the people that you now should consider first a first trial beta release of
your game. They should be people who you trust do give their honest
opinion and really play it through to find any problems.

The beta testers will probably give you a long list of issues that you
have to address before the next release. Some of the issues are simple;
others may affect the basis of your story. You should seriously consider
(and if possible discuss) such suggestions.

One aid in finding any problems in the playability of the game is to use
the log file facility of the interpreter (see the section Command Log on
page 190) to produce a list of the commands a player have used. This
can greatly aid in spotting troublesome areas in your game. One

204 -

Alan Adventure System - Reference Manual

common such is where the player becomes stuck and reverts to "guess-
the-verb". The log will give you the output of the exact game played.

After having collected all this information, considered which ones to act
upon, and implemented these, you should probably do it once again
(sigh!).

Now, at long last, your adventure game is ready to meet its audience.

- 205

Alan Adventure System - Reference Manual

APPENDIX A: HOW TO USE THE SYS-
TEM

How to actually set up and use the complete Alan system depends very
much on which platform, OS and in which environment you are going
to use it.

If you just want to run a game, there is of course the original command
line version distributed from http://www.alanif.se. To use this, read the
relevant sections below to get a feel for how that will work.

But there are also a number of other packages that include an Alan
interpreter, Gargoyle and Spatterlight, are two, with Gargoyle at the
point of writing, being the one most up to date, and also available on
multiple platforms.

If you actually want to write Interactive Fiction using Alan you also
need the compiler. This is distributed from http://www.alanif.se in
what's called the complete packages, including compiler, interpreter, the
documentation, a conversion program for v2 games and some examples.

Whatever option you choose, there should be more detailed instructions
on how to install included with that package. Below follows some
information pertaining to the original versions from the Alan website.

206 -

http://www.alanif.se/
http://www.alanif.se/

Alan Adventure System - Reference Manual

A.1 Compiling

Although there are other options, like a prototype AlanIDE, WinAlan et
al., basic use of the Alan Adventure Development System is through a
traditional command line batch compiler. This means that the actual
development system is a compiler that reads text files created using any
standard text editor. To compile an adventure use the following
command in a command shell:

alan <adventure>

where <adventure> is the name of the main file containing your
adventure source text. The compiler will assume an extension of
“.alan” if none is supplied. The option -help will give a brief help on
other options to the compiler.

The primary output from the compiler is an adventure code file ad-
venture.a3c.

An identifying file, adventure.ifid, is also produced. This file contains a
unique identification of your game for bibliographical purposes. The
content of it will be compiled into the adventure code file, which makes
your game identifiable by electronic means. As long as this file exist the
same identification (IFID) will be used. If it does not exist, a new one
will automatically be generated.

A.2 Compiler Switches

If you run the compiler from a command line you can get information
about which switches it supports using the -help switch.

alan -help

Here are some examples of other switches:

- 207

Alan Adventure System - Reference Manual

• -charset select the character set of the input files. This can be
handy when you get a source file written on another platform, or
for Windows where you edit in a Windows editor (ISO charac-
ters) and use the compiler in a DOS window (DOS characters).
The option should be followed with one of the keywords iso,
mac or dos

• -verbose print compiler version and other verbose messages

• -warnings, -infos show warning (and/or informational) messages
from the compilation process

• -import add a directory to the search path for imported files (see
File 159 for details on the import statement). This switch can be
used multiple times, each adding a new directory

• -listing direct compiler output (error messages etc.) to a file with
the same base name as the input (source) file, but with the
extension .lis

• -full will produce a complete listing of the source on the screen, or
if combined with the -listing option, in the listing file

• -debug include debugging information in the produced adventure
files (same as the debug option, see Options on page 47)

• -pack encode and compress the text data (same as the pack option,
see Options on page 47)

• -summary produce a summary about number of actors, size of
adventure files, timing information etc.

• -dump print the internal form (developers use mainly)

Giving an extra hyphen before the option reverses its meaning (where
appropriate), e.g. --warnings means don’t show warnings. Switches
may be abbreviated as long as they are unambiguous.

208 -

Alan Adventure System - Reference Manual

A.3 Running the Adventure

To play the generated adventure the Alan interpreter, arun, is executed
with the adventure name as a parameter. For example

$ arun adventure

No extension on the adventure name is allowed, the .a3c and, if
applicable, .a3r files are found automatically from that name.

On platforms with graphical user interfaces to which arun has been
natively ported will allow double clicking a game file to start a game, or
double clicking the interpreter application icon, in which case a dialogue
requesting a game will appear.

If the interpreter program is copied to a different name, it will
automatically look for a game file with the same name. Any parameters
or switches will be ignored. For example, by copying the arun program
to adventure the interpreter will, when started under the new name,
directly look for the file adventure.a3c. The files adventure and
adventure.a3c thus makes a complete game package, which is easy to
start using the single command:

$ adventure

A.4 Interpreter Switches

The interpreter supports the following switches:

-v print the version of the interpreter

-d print the version of interpreter and enter debug mode
-i ignore CRC and version errors in the adventure files

-t[<n>] various levels of execution trace, higher <n> gives more
details

- 209

Alan Adventure System - Reference Manual

-l log all player command in a log-file in the current directory

Debugging support is described in Debugging on page 189.

210 -

Alan Adventure System - Reference Manual

APPENDIX B: A SAMPLE INTERACTION

In order to give you an idea of what playing an adventure might be like,
if you do not have done that, this appendix lists a typical, and authentic,
interaction between a player and a game. Player input is preceded by a
prompt (‘>’) and is emphasised for clarity.

In reading this through, you will find that it is possible to use more or
less full imperative statements to communicate with the game.
However, you may leave out non-important words and the game usually
provides a set of common abbreviations, such as ‘w’ for ‘west’, which
really means ‘go west’.

It is also common to provide possibility to refer to multiple objects in a
command, either by use of ‘all’ or specifically listing the objects.

Your input is in italics.

West of House.
Welcome to Dungeon (ALAN Demo). This version created 29-FEB-92.
You are in an open field west of a big white house with a boarded
front door. There is a small mailbox here.

> examine the mailbox
I see nothing special about the mailbox.

> open it
The small mailbox is now open. The small mailbox contains a
leaflet.

> take the leaflet and read it
Taken!
'I hope you have noticed that this isn't your usual Dungeon but
rather an ALAN implementation brought to you by
 ThoNi & GorFo Adventure Factories
Happy Adventuring!'

> inventory
You are carrying a leaflet.

> go south

- 211

Alan Adventure System - Reference Manual

South of House.
You are facing the south side of a white house. There is no door
here, and all the windows are barred.

> east
Behind House.
You are behind the white house. In one corner of the house there
is a window which is slightly ajar.

> open the window
With great effort, you open the window far enough to allow
passage.

> go in
Kitchen.
You are in the kitchen of the white house. A table seems to have
been used recently for the preparation of food. On the table you
can see an elongated brown sack, smelling of hot peppers and a
clear glass bottle. A passage leads to the west, and a dark
staircase can be seen leading upward. To the east is a small
window which is open.

> examine all
You can't refer to multiple objects with 'examine'.

> take all
(elongated brown sack, smelling of hot peppers) Taken!
(clear glass bottle) Taken!

> up
Upstairs.
You are in the attic. The only exit is stairs that lead down. A
large coil of rope is lying in the corner. There is a square
brick here which feels like clay. A nasty-looking knife is lying
here.

> take all
(rope) Taken!
(square clay brick) Taken!
(nasty knife) Taken!

> examine knife
I see nothing special about the knife.

> down
Kitchen (again)

212 -

Alan Adventure System - Reference Manual

A table seems to have been used recently for the preparation of
food. The table is empty. To the east is a small window which is
open.

> w
Living room.
You are in the living room. There is a door to the east. To the
west is a wooden door with strange gothic lettering, which
appears to be nailed shut. There is a trophy case here. In the
center of the room is a large oriental rug.

On hooks above the mantlepiece hangs an elvish sword of great
antiquity. A battery-powered brass lantern is on the trophy case.
There is an issue of US NEWS & DUNGEON REPORT dated 29-FEB-92
here.

> move rug
With a great effort, the rug is moved to one side of the room.
With the rug moved, the dusty cover of a closed trap door
appears.

> open door
I don't know which door you mean.

> open trap door
The door reluctantly opens to reveal a rickety staircase
descending into darkness.

> take the sword, the lantern and the issue
(rug) The rug is extremely heavy and cannot be carried.
(elvish sword) Taken!
(battery brass lantern) Taken!
(issue) Taken!

> read issue
 US NEWS & DUNGEON REPORT
29-FEB-92................................Late Dungeon Edition
 --- LATE NEWS FLASH!! ---
The Dungeon prelude is now available as an ALAN implementation.
The Dungeon game was selected as an example that everybody
interested in adventure gaming should recognize.

- 213

Alan Adventure System - Reference Manual

APPENDIX C: RUN-TIME MESSAGES

This appendix describes the errors that may occur during the running of
the adventure, i.e. during interpretation of the generated Acode. There
are two classes of errors, player input response messages and system
errors.

Input response errors are not fatal but abort the execution of the current
player command and discard the rest of the user input, which is a
normal part of the interaction between the player and the Alan run-time
system. System errors are fatal and abort the execution of the adventure.

C.1 Input Response Messages

Various messages are printed for the benefit of the player. Most
messages probably come from the adventure itself, i.e. they where
provided by the adventure author. However, some messages can be
given directly by the Arun interpreter. They are presented below using
the Alan STRING-format, i.e. containing the special character
combinations described in Output Statements on page 117. These
standard messages exist for all languages and the default value of the
texts are selected depending upon the setting of the language option.

The contents of any message may be modified using the Message state-
ment (see section Messages on page 113). The identifier on the first line
of a message explanation is the identifier that should be used in the
Message statement to change the contents of that message. The text
after the colon on the first line is the default English message text. Then
follows a short explanation, including possible availability of
parameters and their types.

All messages are available in all supported languages but below the
English texts are shown.

214 -

Alan Adventure System - Reference Manual

Note: Although the default values of the messages are static
strings, it is possible to create messages that are more
dynamic. The Message statement allows any statements,
not only strings, and supplies dynamic values as parameters
for many messages. See Messages on page 113 for details.

UNKNOWN_WORD : "I don't know the word ‘$1’."

A word not in the dictionary was used by the player.

parameter1 is a string containing the word used.

WHAT : "I don't understand."

The input did not follow any syntax the Arun parser knows about.
I.e. the input could not be matched to any of the defined syntaxes.

WHAT_WORD : "I don't know what you mean by '$1'."

The player input a multiple word, such as ”all”, “them” or a
pronoun, but the Arun parser could not find any objects or actors
that it could refer to.

parameter1 is a string which is the word used by the player.

MULTIPLE : "You can't refer to multiple objects with
'$v'."

The syntax matched for the indicated verb did not allow multiple
parameters.

NOUN : "You must supply a noun."

The player started to specify an object or actor but only supplied
the adjectives.

- 215

Alan Adventure System - Reference Manual

AFTER_BUT : "You must give at least one object after
'$1'."

In a command containing ALL BUT, the player must also give the
object or objects excluded.

parameter1 is a string containing the BUT-word the player used.

BUT_ALL : "You can only use '$1' after '$2'."

The BUT-words may only be used after an ALL-word.

parameter1 is a string containing the BUT-word used by the
player.

parameter2 is a string containing the ALL-word used by the
player.

NOT_MUCH : "That doesn't leave much to $v!"

The player used an ALL BUT construct, which explicitly excluded
everything matched by the ALL.

WHICH_START : "I don't know if you mean $+1"
WHICH_COMMA : ", $+1"
WHICH_OR : "or $+1."

Multiple objects (or actors) matched the words given by the
player. More adjectives are necessary to distinguish between
them. The three messages are used to list the possibilities. The
player can repeat the command with a more precise wording. The
first message is used for the first alternative, the last for the last
alternative and the middle for all the middle alternatives.

For each message, parameter1 is a reference to the alternative
instance.

WHICH_PRONOUN_START : "I don’t know if you by ‘$1’"
WHICH_PRONOUN_FIRST : "mean $+1"

When a pronoun given in a command matched multiple parameter

216 -

Alan Adventure System - Reference Manual

in the previous command, these messages are issued to explain
this and which the alternatives where. Note that the message is
different from the multiple match above only for the start of the
message, the list of alternatives are the same, i.e.
WHICH_COMMA (repeated) and WHICH_OR (the final).

NO_SUCH : "I can't see any $1 here."

The player referred to an object or actor that was not present.

parameter1 is an instance referring to an instance.

Note: If there did not actually even exist an instance in the game
with the combination of the adjectives and nouns that the
player used, the interpreter uses any instance matching the
noun. This still allows inflecting in accordance with the
noun case, which is common in many languages (English
being one of few exceptions).

NO_WAY : "You can't go that way."

A directional word was used but there is no exit in that direction.

CANT0 : "You can't do that.",

The interpreter could match the input to some syntax, but did not
find any verb body to execute. This may be a situation overlooked
by the author or the player may be trying to do something that is
not possible.

SEE_START : "There is $01"
SEE_COMMA : ", $01"
SEE_AND : "and $01"
SEE_END : "here. "

These messages are used to construct the default text for describ-
ing things present at the current location that have no description

- 217

Alan Adventure System - Reference Manual

clause. The message parts are used as in "There is <indefinite
form object1>, <indefinite form object2> and <indefinite form
object3> here . " The underlined parts are the ones in the messages
and each object is printed in its indefinite form as appropriate.

CONTAINS : "$+1 contains"
CARRIES : "$+1 carries"

The messages above are used to construct the default headers for
listing containers. The CARRIES message is used if the container
instance is an actor.

CONTAINS_COMMA : "$01,"
CONTAINS_AND : "$01 and"
CONTAINS_END : "$01."

The messages above are used to construct the contents listing of a
container in much the same way as for the object listing above.
The messages are used according to the pattern "<header for
container> contains <indefinite form contents1>, < indefinite
form contents2> and < indefinite form contents3>."

You can modify these messages to change the formatting of
listings. e.g. to one element per line.

CAN_NOT_CONTAIN : "$+1 can not contain $+2."

If an attempt to put something in a container that does not meet
the class restrictions for the container, this message will be
delivered.

IS_EMPTY : "$+1 is empty."

The default messages for empty containers.

EMPTY_HANDED : "$+1 is empty-handed."

The default messages for empty containers that are actors.

218 -

Alan Adventure System - Reference Manual

HAVE_SCORED : "You have scored $1 points out of $2."

This is the default message for presenting scores, if you use the
Score statement.

parameter1 is an integer containing the current score.

parameter2 is an integer containing the maximum score possible.

MORE : "<More>"

The classic message when the screen is full. The player should
press RETURN to proceed.

AGAIN : "(again)"

This message is presented immediately after the location name if
the location has been visited before to give the player the
information that he has visited this location before (a good thing
in some adventures). If you wish to disable this, set this message
to an empty string.

SAVE_WHERE : "Enter file name to save in"

When executing a Save the player can enter the name of the file to
save in. The name used in the previous Save is used as a default.

SAVE_OVERWRITE : "That file already exists, overwrite
(y) ? "

If the save file already existed the player must confirm
overwriting.

SAVE_FAILED : "Sorry, save failed."

When executing a Save, the file system indicated some error,
usually a write protected directory or full disks.

RESTORE_FROM : "Enter file name to restore from"

A Restore statement can restore from any named file. The

- 219

Alan Adventure System - Reference Manual

previously used file name is used as the default.

SAVE_MISSING : "Sorry, could not open the save file."

When executing a Restore, Arun could not find, or open, a save
file with the name entered.

NOT_A_SAVEFILE :"That file does not seem to be an Alan
game save file."

The save file found by the Restore statement was not Alan game
save file.

SAVE_VERSION : "Sorry, the save file was created by a
different version."

The save file found by the Restore statement was created by a
different version of the Alan interpreter or the game.

SAVE_NAME : "Sorry, the save file did not contain a save
for this adventure."

The indicated save file did not contain a save of this adventure.

REALLY : "Are you sure (RETURN confirms) ? "

This is the confirmation prompt, e.g. before overwriting an
already existing save file.

QUIT_ACTION : "Do you want to RESTART, RESTORE, QUIT or
UNDO?"

The Quit statement requests an action from the player.

Note: The possible answers are currently hard-wired into the in-
terpreter, so changing RESTART, RESTORE, QUIT or UNDO
will probably confuse the player!

220 -

Alan Adventure System - Reference Manual

UNDONE : "’$1’ undone."

When an action is undone, this message is presented to confirm
the player action.

parameter1 is a string containing the player command that was
undone. Note that since only commands that change any state in
the game world are logged the command might very well not be
the last command.

NO_UNDO : "No further undo available."

If the player tries to undo an action and no further actions where
recorded (because of lack of memory, undone to beginning of
session, etc.) this message is used to inform the player of that fact.

WHICH_PRONOUN_START : "I don't know if you by '$1'
WHICH_PRONOUN_FIRST : "mean $+1"

These messages are presented when the play used a pronoun
which was ambiguous. The alternatives are listed using the
WHICH_PRONOUN_FIRST followed by the message(s)
WHICH_ONE_COMMA (if there were more than two alternatives), and
finally by WHICH_ONE_OR.

IMPOSSIBLE_WITH : "That's impossible with $+1."

If a player action is impossible with a particular parameter
combination, but might be possible otherwise, this message is
shown to indicate that it is the action with the parameter that is
impossible.

CONTAINMENT_LOOP : "Putting $+1 in itself is impossible."

The interpreter detected an attempt to locate an instance inside
(contained) itself. This message reliefs the author from the
responsiblility to check for every possible circumstance where this
might happen.

- 221

Alan Adventure System - Reference Manual

CONTAINMENT_LOOP2 : "Putting $+1 in $+2 is impossible
since $+2 already is inside $+1."

Same as above but in this case the containment was transitive, i.e.
it would create a containment loop with more that one instance
involved.

C.2 System Errors

System errors are errors caused by internal malfunctions. Mainly these
are implementation errors (aka. bugs!), but may (in some manner) also
result from user errors. The system error messages also have a purple
prose style to fit in with your game, e.g.:

As you enter the twilight zone of Adventures, you stumble and
fall to your knees. In front of you, you can vaguely see the
outlines of an Adventure that never was.

SYSTEM ERROR: Can’t open adventure code file.

Player Errors
These errors are usually caused by incorrect arguments or file names
entered by the player.

Can’t open adventure code file.

The player attempted to run an adventure for which there were no
code file available, probably a misspelling.

Could not read all A3C code.
Checksum error in Acode (.A3C) file (%1 instead of %2).

These two messages indicate problems in the adventure file.
Possibly caused by transfer problems of the .a3c file.

222 -

Alan Adventure System - Reference Manual

Author Errors
The following system errors are in some sense caused by the Adventure
author (you).

Out of memory.

The adventure was so large that the interpreter could not allocate
enough dynamic memory for it. Try to finish other running
applications (does not work or is not possible on all systems), get
more real memory, or complain to the Alan implementors. This
might also be caused by reading incomplete or corrupted game
files.

Incompatible version of ACODE program.

The version of the interpreter you are using is different than the
Alan compiler used to compile the adventure. Use a different Arun
or recompile the adventure with the matching compiler.

Note: the Arun switch ‘-d’ will, beside entering debug mode,
also print the version of both the Arun interpreter and the
version of the Alan compiler used to compile the
adventure.

Index not in container in 'containerMember()'

This is most likely caused by doing Random In on an empty
container.

Recursive LOOK.

This message is shown when a LOOK statement is executed as a
result of a LOOK! The LOOK statement should only be used in verb
bodies. It should not be used in descriptions of instances because
there is a definite risk that it will be executed as the effect of a

- 223

Alan Adventure System - Reference Manual

LOOK, either explicit or implicit (by the hero entering a location
which would trigger a LOOK in itself thus starting the recursion!).

Locating a location that would create a recursive loop of
locations containing each other.

This means that an attempt to locate a location inside itself has
been made. Probably in an attempt to dynamically manipulate the
location structure (the map).

Non-existing parameter referenced.

A parameter that wasn’t available was referenced. This is
probably due to using a parameter shorthand such as $2 inside a
string in a context where the syntax was restricted to only one
parameter. This may avoided by using the Say statement instead
of the embedded string parameter references, which would allow
compile time checking, thus avoiding the risk of having this
happen to the player.

Note: Parameter references embedded in strings are currently not
checked during compile time.

Interpreter recursion.

The interpreter keeps track of its execution so that it can never
enter an endless loop. There are a few situations where this can
occur. One example is if the description of an instance in some
way, directly or indirectly, executes Describe This. As the
interpreter is already executing a description of the current
instance the invocation of the second will create a loop that never
terminates.

224 -

Alan Adventure System - Reference Manual

Implementor Errors
Any other text in a system error message is really a SYSTEM ERROR.
Scribble down the text and contact the implementors. If possible, supply
the source for your adventure, a trace of the few last player commands
(if possible with single step and trace turned on, see Debugging on page
189).

- 225

Alan Adventure System - Reference Manual

APPENDIX D: LANGUAGE GRAMMAR

D.1 Description

The Alan language is in this manual defined using a BNF-form, which
you can see in most descriptions. The grammar is a set of rules defining
what constructs are legal in the source for an Alan program. Below
follows a brief explanation on how to interpret these rules by using
some short examples. For details on the actual rules, refer to the content
of chapter 3, Language Reference.

The BNF form divides the rules for structure of the input source by
describing it in smaller parts, which may in turn be defined by other
rules. For example, a rule might say that an ADVENTURE (in this case an
Alan program) consists of options, declarations and a start section. This
grammar rule would look like:

adventure = [options] {declaration} start_section

Each item that is an identifier (‘options’, ‘declaration’ etc.), is a
construct that in turn is defined by other rules, possibly elsewhere in the
manual.

The equal sign (=) may be read as “consists of” or “is defined as”.
Optional parts are surrounded by square brackets (‘[‘ and ‘]’). Parts that
may be repeated are enclosed in curly braces (‘{‘ and ‘}’).

= : 'is defined as'

[] : 'optional'

{} : 'zero or more times'

226 -

Alan Adventure System - Reference Manual

So the rule might be read as ‘an adventure consists of options which are
optional, zero or more declarations and a start_section’.

If the item to the left of the equal sign may be defined in multiple ways,
the alternatives are divided by a vertical bar (‘|’). For example

declaration = messages
 | class
 | instance
 | verb
 | rule
 | synonyms
 | syntax
 | verb
 | event
 | addition

This definition says that a declaration might be messages, a class
definition, an instance declaration, etc.

The basic component of the language is reserved words and symbols.
These are in the rules represented by quoted strings of characters. These
are not defined elsewhere, but should instead be written as indicated.
Character case is not significant.

random_expression = ‘RANDOM’ ‘IN’ expression

The reserved words ‘random’ and ‘in’ can be followed by an expression
(which, to make sense, must refer to a container instance) to form a
'random_expression' (which in itself is an expression).

D.2 Keywords

The following is a complete list of all keywords in the Alan language.
Note that they can still be used as identifiers in a source file if the rules
described in Words, Identifiers and Names on page 155 are followed.
Basically this means that if you surround them by single quotes they can

- 227

Alan Adventure System - Reference Manual

be used as identifiers in your source code anyway. This might be
especially important if you want to use any of these words as words the
player might want to input, such as part of a name for an item.

'actor' 'add' 'after' 'an' 'and' 'are' 'article' 'at' 'attributes'
'before' 'between' 'by' 'can' 'cancel' 'character' 'characters'
'check' 'container' 'contains' 'count' 'current' 'decrease'
'definite' 'depend' 'depending' 'describe' 'description' 'directly'
'do' 'does' 'each' 'else' 'elsif' 'empty' 'end' 'entered' 'event'
'every' 'exclude' 'exit' 'extract' 'first' 'for' 'form' 'from'
'has' 'header' 'here' 'if' 'import' 'in' 'include' 'increase'
'indefinite' 'initialize' 'into' 'is' 'isa' 'it' 'last' 'limits'
'list' 'locate' 'location' 'look' 'make' 'max' 'mentioned'
'message' 'min' 'name' 'near' 'nearby' 'negative' 'no' 'not' 'of'
'off' 'on' 'only' 'opaque' 'option' 'options' 'or' 'play' 'prompt'
'pronoun' 'quit' 'random' 'restart' 'restore' 'save' 'say'
'schedule' 'score' 'script' 'set' 'show' 'start' 'step' 'stop'
'strip' 'style' 'sum' 'synonyms' 'syntax' 'system' 'taking' 'the'
'then' 'this' 'to' 'transcript' 'until' 'use' 'verb' 'visits'
'wait' 'when' 'where' 'with' 'word' 'words'

228 -

Alan Adventure System - Reference Manual

APPENDIX E: PREDEFINED PLAYER
WORDS

Alan defines a set of words for the player to use, which are required for
the syntax variations described in Player Input on page 162. These
words are available even without any declarations at all in the game
source. Some of these might conflict with, or complement, words
defined in the source. The lists below contain those player words for the
currently defined languages.

English
ALL: all everything
AND: and then
BUT: but except
THEM: them
NOISE: go the

Swedish
ALL: alla allt
AND: och
BUT: förutom utom
THEM: dem dom
NOISE: gå

German
ALL: alles
AND: und
BUT: ausser
THEM: sie
NOISE: das der die gehen

- 229

Alan Adventure System - Reference Manual

APPENDIX F: COMPILER MESSAGES

F.1 Format of messages

This appendix describes the error messages generated by the Alan
compiler. The compiler presents the messages in the order of occurrence
in the file. The offending source line is always shown together with the
message. The following example illustrates a typical compiler output.

ZILexample.alan

23. If barfoo Is foobared Then
====> 1
1 310 E : Identifier 'barfoo' not defined.

27. Exit north To Rumble.
====> 1
1 310 E : Identifier 'rumble' not defined.

28. Exit west To Tumble.
====> 1
1 310 E : Identifier 'tumble' not defined.

46.
====> 1
1 101 E : 'START' 'HERE' '.' inserted.
1 211 E : Must start at a Location.

 5 error(s).
 No detected warnings.
 2 informational message(s).

The following information is available in the compiler listing, framed
for visibility:

1. File name

2. Line number and source text of a line
3. Message indicator, pointer, message number and text

4. Message summary (three lines)

230 -

1.

2.

3.

1.

Alan Adventure System - Reference Manual

For information on how to select which levels of messages to show and
where output is directed, refer to the options and their descriptions in
section Compiler Switches on page 207.

F.2 Message explanations

For each message, a short description of the error, possible causes etc.
are given. Each message reported also indicates the severity of that
error. The message is supplemented with an indication of its severity.
An informational message (indicated by the letter ‘I’) simply gives
some information to the user, a warning message (‘W’) indicates an
error but the compilation still generates a valid output (although not
always what the user intended). Error messages (‘E’) indicate errors that
have made it impossible to generate any output, but the compiler will
continue to process all input. Fatal (‘F’) and system (‘S’) messages
always terminate the compilation process immediately.

The message descriptions below may also contain the special insertion
markers ‘%n’ (where n is a digit), which indicate that text will be
inserted at that point in the message during compile time, e.g. the
offending identifier or a file name.

100 Parsing resumed here.

A severe syntax error was discovered. Some input was skipped.
This error message marks the place where the parsing was
restarted.

101 %1 inserted.

A syntax error was discovered and one or more symbols inserted
in the input in an attempt to recover.

102 %1 deleted.

A syntax error was discovered and one or more symbols were
skipped from the input in an attempt to recover.

- 231

Alan Adventure System - Reference Manual

103 %1 replaced by %2.

A syntax error was discovered and one or more symbols were
replaced by one or more other symbols in an attempt to recover.

104 Severe syntax error, construct ignored.

An intricate syntax error was discovered. A complete construct
was skipped in an attempt to recover.

105 Syntax error, couldn’t recover.
106 Parse stack overflow.
107 Parse table error.
108 Parsing terminated.

Alan compiler implementation errors. Should not occur!

150 Unterminated STRING.

An opening double quote was not terminated by a closing quote
before end of file. Error message points to the opening quote.
Remember STRINGs may cover several lines.

151 File name missing for $INCLUDE directive.

An include directive was given but no file was indicated. The
complete file name must be given according to the rules in section
File on page 159.

232 -

Alan Adventure System - Reference Manual

198 Could not open output file '%1' for writing.

The indicated output file could not be opened, probably because
the directory did not exist or the file or directory was write-
protected.

199 Adventure source file (%1) not found.

The source file given on the command line did not exist. The Alan
compiler adds the .alan extension to the file name given, if it did
not include a period.

201 Mismatched block identifier, ’%1’ assumed.

The identifier following a terminating END did not match the one
given at the beginning of the construct. This indicates an illegal
nesting or a missed END IF. The identifier indicates to which
block the END is assumed to belong.

202 Multiple usage of direction ’%1’ in this Exit.
203 Multiple definition of Exit ’%1’ in this location.

The directional word indicated was used more than once, either in
the same, or different exit declaration from the location. This is
contradictory and not legal.

204 Multiple definition of %1 DEFAULTS. Ignored.

Only one declaration of default attributes per type is allowed. The
second declaration is ignored.

205 Multiple usage of ’%1’ in this VERB definition.

When specifying actions for multiple verbs in the same
declaration, the indicated word occurred twice.

206 Multiple definition of SYNTAX for %1.

More than one syntax definition for the same verb was found. This
is an error. You should remove the offending one.

- 233

Alan Adventure System - Reference Manual

207 VERB ’%1’ is not defined.

A SYNTAX construct defined the syntax for a verb that was never
defined.

208 ’%1’ is not a VERB.

The identifier on the left hand side of a SYNTAX definition was de-
fined as something that was not a VERB.

209 First element in a SYNTAX must be a player word.

The definition of a SYNTAX construct may not start with a
parameter. The first word must be a player word so as to
distinguish it from other forms of input.

210 Action qualification not allowed here.

The BEFORE, AFTER and ONLY qualifiers may not be used in a
DOES-clause in this context.

211 Adventure must start at a Location.

You specified a where expression in the START section that did not
specify an explicit location. The start section specifies where the
hero starts and must be a LOCATION.

212 Syntax parameter ’%1’ overrides symbol.

The SYNTAX definition valid in this context defined a symbol that
is the same as an entity (class or instance). The syntax parameter
will take precedence.

234 -

Alan Adventure System - Reference Manual

213 Verb alternatives not allowed here.

You may only specify different verb body alternatives within
objects. The global verb body and the verb body in the location
may not have alternatives.

214 Parameter not defined in syntax for ’%1’.

The identifier given as the selector in a verb body alternative was
not defined in the syntax for that verb.

215 Syntax not compatible with syntax for ’%1’.

To be able to use the same body for different verbs by supplying
them in a comma-separated list in the verb header they must all be
compatible. This means that they have the same number of
parameters and the parameters have the same names. Otherwise
conflicts will arise when figuring out which parameter to use.

216 Parameter ’%1’ multiply defined in this SYNTAX.

The parameter was defined more than once in the same SYNTAX
definition.

217 Only one multiple parameter allowed for each syntax.
This one ignored.

To be able to use multiple parameters in a player command only
one parameter may be marked as referring to multiple objects or
actors using ALL or conjugations. This is a warning, the syntax
will be as if the first multiple marker was the only one.

218 Multiple definition of attribute ’%1’.

The indicated attribute name was defined more than once in the
same context (default attribute list or within the same entity).
Remove one definition.

220 Multiple definition of ’%1’.

- 235

Alan Adventure System - Reference Manual

The indicated word has multiple, and possibly different,
definitions.

221 Multiple class restriction for parameter ’%1’.

The same parameter occurred more than once in the list of class
restriction in the same SYNTAX definition.

222 Identifier ’%1’ in class definition is not a
parameter.

Only the parameters in the syntax may be referenced in the class-
restricting clause of a SYNTAX definition.

230 No syntax defined for this verb, assumed ’%1
(object)’.

This message is a warning to indicate that the default syntax
handling has been used.

310 Identifier ’%1’ not defined.

The indicated word was never defined. It must be declared either
as a location, an object, a container, an actor or an event.

311 Must refer to %1.

The construct indicated does not refer to the correct kind of item,
the message indicates which kind of item was expected.

312 Parameter not uniquely defined as %1, which is
required.

In certain contexts it is necessary to refer to a particular type of
entity, e.g. the IN expression must refer to a container or an object
with the container property. If the reference (the WHAT part) is a
parameter identifier, this parameter must be restricted to be of the
required type by use of parameter restrictions (such as ‘WHERE c
ISA CONTAINER’).

236 -

Alan Adventure System - Reference Manual

315 Attribute not defined for ’%1’.

The indicated attribute is not defined for the particular object,
location or actor. It must either be a default attribute or be locally
declared.

318 Entity ’%1’ is not a Container.

The referenced entity (object or actor) was not declared to have
the container property, although the context required a container.

320 Word ’%1’ belongs to multiple word classes (%2 and
%3).

A word was declared as to belong to different word classes such
as noun, verb, adjective etc. Only multiple declarations that may
lead to unexpected behaviour are reported, usually because of
limitations in the current implementation. Generally it is allowed
to declare a word e.g. as both an adjective and a noun.

321 Synonym target word ’%1’ not defined.

To define a synonym its target word (the word on the left side of
the equal sign) must be defined as a proper word elsewhere in the
source.

322 Word ’%1’ already defined as a synonym.

A word may not be declared as a synonym for different target
words.

330 Wrong types of expression. Must be of %1 type.

In an expression, a value or an expression was used that had a type
that was not allowed. The message indicates the correct type.

331 Incompatible types in %1.

- 237

Alan Adventure System - Reference Manual

The two values in an expression with a binary operator did not
have compatible types, or the value used in a SET statement was
not type compatible with the referenced attribute.

332 Type of local attribute must match default attribute.

An attribute declared locally (within an object, actor or location)
that has the same name as a default attribute, has to have the same
type (Boolean, integer or string).

333 The word ’%1’ is defined as a synonym as well as of
another word class.

Synonyms must be words not defined elsewhere.

400 Script not defined for Actor ’%1’.

No script with the indicated identity was defined for the actor.

401 Actor reference required outside Actor specification.

Inside an actor specification it is permissible to leave out the actor
reference in a USE statement in which case the surrounding actor is
assumed. Outside actor specifications, the actor reference must
always be supplied.

402 An Actor can’t be inside a Container.

The LOCATE statement tried to locate an actor inside a container.
This is not allowed.

403 Script number multiply defined for Actor ’%1’.

The indicated number was used for more than one script for the
same actor.

404 Attribute to %1 must be a default attribute.

To reference attributes for OBJECT, LOCATION and ACTOR the at-
tribute used must be a default attribute, as all objects, locations or

238 -

Alan Adventure System - Reference Manual

actors must have it.

405 The class of a parameter used in %1 must be uniquely
defined.

In some statements the class of the identifier must be determined
during compile time. This is, for example, the case in MAKE and
SET statements.

406 A parameter defined as Container have no default
attributes.

A parameter that was restricted to containers do not have any
default attributes. Actors, objects and locations have separate sets
of default attributes. In order to refer to an attribute on a parameter
it must be restricted to one of these classes. If the parameter also
requires the container property, use CONTAINER ACTOR or
CONTAINER OBJECT.

407 Attribute in LIMITS must be a default attribute.

All objects must have the attribute that a limit is to test.

408 Attributes in %1 must be of Boolean type.

The attribute referenced in the indicated context must be a
Boolean attribute.

409 No parameter defined in this context.

No parameter is defined in the context where a reference to
OBJECT was made. Parameters are only defined within checks and
bodies of verbs, so the use of OBJECT (an obsolete construct, use
the parameter identifier instead) is also restricted to those
contexts. See Run-time Contexts 164.

- 239

Alan Adventure System - Reference Manual

410 A parameter may not be used in %1.

In certain statements a parameter may not be used at all.

411 %1 ignored for Actor ’hero’.

It is allowed to redefine the predefined actor HERO (the player).
This makes it possible to define local attributes and descriptions
for the hero. However any definition of scripts or initial location is
ignored (the script is supplied by the player in his input and the
initial location is defined in the START section).

412 ’ACTOR’ is not allowed inside events.

In events no actor is active. This means that no reference to the
active actor can be made. See Run-time Contexts 164.

413 Expression in %1 must be of integer type.

The context required a numeric expression.

414 Invalid initial location for %1.

The initial location specified was not valid.

415 Invalid Where specification in %1 statement.

The statement indicated does not allow the WHERE specification
used.

416 Interval of size 1 in RANDOM expression.

This message informs that the interval in a RANDOM statement was
just one single value, resulting in always returning the same value,
not very random.

240 -

Alan Adventure System - Reference Manual

417 Comparing two constant entities will always yield the
same result.

The expression compared two identifiers none of which was a
parameter. This will always give the same result. This is probably
an error, but the message is still a warning as it gives a perfectly
running adventure (but, perhaps not what you intended?).

418 Aggregate is only allowed on integer type attributes.

The aggregates MAX and SUM can only perform their calculation on
integers.

- 241

Alan Adventure System - Reference Manual

419 Expression in %1 must be of integer or string type.

In the indicated context only integer and string type expressions
may be used.

501 LOCATION ’%1’ has no Exits.

In case the hero is located at the indicated location he may not be
able to escape from that location. This may be intentional (as for a
limbo location or a location with magic words to use as an escape)
but the warning is presented as a reminder.

600 Multiple use of option ’%1’, ignored.

The indicated option was used more than once, this occurrence is
ignored and the previous setting used.

601 Unknown option, ’%1’.

A word was given in the option section that was not the name of
an option.

602 Illegal value for option ’%1’.

The indicated option does not allow the value used.

997 SYSTEM ERROR: %1

A severe implementation dependent error has occurred (a bug!).
Please report.

998 Feature not implemented in %1.

The combination of some syntactically correct but semantically
tricky constructs is not yet implemented. Please report.

999 No Adventure generated.

When an error is detected this informational message is given to
indicate that no executable adventure was output.

242 -

Alan Adventure System - Reference Manual

APPENDIX G: LOCALIZATION

To create adventures in languages other than English, there are a few
separate issues to consider. The sections below describes the support
that Alan provides for each of them.

G.1 Character/Glyph availability

Most languages have characters, or glyphs, other than the common ones
used in English, like ö, Ñ or æ. Alan uses a character encoding called
ISO-8859-1 which allows for many characters (but not all) used in
European and other countries.

To make use of these characters you just need to make sure that the
adventure text files use this character encoding. Usually you can do this
in the editor you are using, often when you save a file the first time, or
there should be a setting in your operating system to define the default
encoding.

If the Alan source files are encoded using ISO-8859-1 they will be
presented correctly when the game is run using e.g. WinArun. If you run
the games in console mode you have to ensure that both your console
program and your operating system are set (and able) to show characters
using the ISO-8859-1 encoding.

G.2 Standard messages

There are two main types of messages that are output by interpreter to
the player. They are initiated by various parts of the Alan system. The
built in messages are built in to the compiler, see Input Response
Messages on page 214, but can be changed to messages in the available

- 243

Alan Adventure System - Reference Manual

languages. If you are using any of the available standard libraries, that
library also issues messages, often overriding the messages built-in.

The only way to translate messages in the library is to translate the
library. This is probably what you want to do anyway, since most of the
verbs would be in English.

Messages built into the compiler are generated automatically into the
game file, e.g. as error messages like “You can't do that.” These can
either be changed by the Language option (if the language of your
choice is already supported), or translated using the Message statement.
Appendix Run-time Messages on page 214 lists all such messages and
their content.

There are a few special words that are currently not author translatable,
as described in Appendix Predefined player words on page 229.

G.3 Player words

TBD.

G.4 Word variations

TBD. <Text about using multiple names for the same objects &
synonyms, and how the interpreter chooses which word to use when>

G.5 Word order

TBD. <Text about how the rigid word order (verb first, possibly
prefixed with a noun) that Alan imposes. Or does it? With the noun first
is it possible to implement “das buch nehmen” with the syntax take
= (o) nehmen?>

244 -

Alan Adventure System - Reference Manual

APPENDIX H: PORTABILITY OF GAMES

The adventure files produced by the Alan compiler is compatible across
all supported platforms. This means that by copying the binary .a3c file
(and any .a3r file if available) to another machine it should be possible
to run the game on that new machine without any changes. Note
however that the files must be transferred in binary mode (where
applicable). All characters are automatically converted to the native set
allowing multi-national characters to be presented correctly even on
machines that do not support the IS0 8859-1 standard. This is of course
restricted to characters having a representation in the current native
character set.

It is a strong goal to achieve complete portability of the games to be
able to provide games for all supported platforms without re-
compilation. Game authors are encouraged to seriously consider this
when designing games and not use any system specific characters,
character combinations or special commands that may be available on
some systems.

Portability between different versions of the system is not guaranteed.
Again, it is a strong goal to be backwards compatible, at least between
different builds within the same major version. This means that the most
recent v3 interpreter should run games from all previous v3 compilers.

Changes in the game file format may occur between versions, which
may or may not be compatible. Conversion tools may be available, older
interpreter versions can be requested.

- 245

Alan Adventure System - Reference Manual

APPENDIX I: COPYING CONDITIONS

The Alan System is distributed under the Artistic License 2.0 for which
the full text follows. The intent of this licensing is that the Copyright
Holder retain some control over the development of the Alan System,
while still keeping it available as open source and free software.

In practical terms this means that the licensing is chosen so that it
should be possible to

 freely distribute games produced with the Alan system, including
for profit

 re-distribute compiled versions of the Alan system, including
together with a game which is not open source or free, provided
there is no charge for the Alan system

 redistribute compiled and/or source versions of the original Alan
system (the Standard Version)

 acquire the source code for the Standard Version

 modify the source code for private use

 re-distribute compiled and/or source of a Modified Version
provided they are done so under a compatible license with
appropriate attribution *and* that the modification is described
and made available, preferably by returning it to the Copyright
Holder so that it can be merged into the Standard Version

246 -

Alan Adventure System - Reference Manual

I.1 Artistic License 2.0

Preamble
This license establishes the terms under which a given free software
Package may be copied, modified, distributed, and/or redistributed. The
intent is that the Copyright Holder maintains some artistic control over
the development of that Package while still keeping the Package
available as open source and free software.

You are always permitted to make arrangements wholly outside of this
license directly with the Copyright Holder of a given Package. If the
terms of this license do not permit the full use that you propose to make
of the Package, you should contact the Copyright Holder and seek a
different licensing arrangement.

Definitions
"Copyright Holder" means the individual(s) or organization(s) named in
the copyright notice for the entire Package.

"Contributor" means any party that has contributed code or other
material to the Package, in accordance with the Copyright Holder's
procedures.

"You" and "your" means any person who would like to copy, distribute,
or modify the Package.

"Package" means the collection of files distributed by the Copyright
Holder, and derivatives of that collection and/or of those files. A given
Package may consist of either the Standard Version, or a Modified
Version.

"Distribute" means providing a copy of the Package or making it
accessible to anyone else, or in the case of a company or organization,
to others outside of your company or organization.

- 247

Alan Adventure System - Reference Manual

"Distributor Fee" means any fee that you charge for Distributing this
Package or providing support for this Package to another party. It does
not mean licensing fees.

"Standard Version" refers to the Package if it has not been modified, or
has been modified only in ways explicitly requested by the Copyright
Holder.

"Modified Version" means the Package, if it has been changed, and such
changes were not explicitly requested by the Copyright Holder.

"Original License" means this Artistic License as Distributed with the
Standard Version of the Package, in its current version or as it may be
modified by The Copyright Holder in the future.

"Source" form means the source code, documentation source, and
configuration files for the Package.

"Compiled" form means the compiled byte code, object code, binary, or
any other form resulting from mechanical transformation or translation
of the Source form.

Permission for Use and Modification Without Distribution

(1) You are permitted to use the Standard Version and create and use
Modified Versions for any purpose without restriction, provided that
you do not Distribute the Modified Version.

Permissions for Redistribution of the Standard Version

(2) You may Distribute verbatim copies of the Source form of the
Standard Version of this Package in any medium without restriction,
either gratis or for a Distributor Fee, provided that you duplicate all of
the original copyright notices and associated disclaimers. At your
discretion, such verbatim copies may or may not include a Compiled
form of the Package.

248 -

Alan Adventure System - Reference Manual

(3) You may apply any bug fixes, portability changes, and other
modifications made available from the Copyright Holder. The resulting
Package will still be considered the Standard Version, and as such will
be subject to the Original License.

Distribution of Modified Versions of the Package as Source

(4) You may Distribute your Modified Version as Source (either gratis
or for a Distributor Fee, and with or without a Compiled form of the
Modified Version) provided that you clearly document how it differs
from the Standard Version, including, but not limited to, documenting
any non-standard features, executables, or modules, and provided that
you do at least ONE of the following:

(a) make the Modified Version available to the Copyright Holder of the
Standard Version, under the Original License, so that the Copyright
Holder may include your modifications in the Standard Version.

(b) ensure that installation of your Modified Version does not prevent
the user installing or running the Standard Version. In addition, the
Modified Version must bear a name that is different from the name of
the Standard Version.

(c) allow anyone who receives a copy of the Modified Version to make
the Source form of the Modified Version available to others under

(i) the Original License or

(ii) a license that permits the licensee to freely copy, modify and
redistribute the Modified Version using the same licensing terms that
apply to the copy that the licensee received, and requires that the Source
form of the Modified Version, and of any works derived from it, be
made freely available in that license fees are prohibited but Distributor
Fees are allowed.

- 249

Alan Adventure System - Reference Manual

Distribution of Compiled Forms of the Standard Version or Modified Versions
without the Source
(5) You may Distribute Compiled forms of the Standard Version
without the Source, provided that you include complete instructions on
how to get the Source of the Standard Version. Such instructions must
be valid at the time of your distribution. If these instructions, at any time
while you are carrying out such distribution, become invalid, you must
provide new instructions on demand or cease further distribution. If you
provide valid instructions or cease distribution within thirty days after
you become aware that the instructions are invalid, then you do not
forfeit any of your rights under this license.

(6) You may Distribute a Modified Version in Compiled form without
the Source, provided that you comply with Section 4 with respect to the
Source of the Modified Version.

Aggregating or Linking the Package
(7) You may aggregate the Package (either the Standard Version or
Modified Version) with other packages and Distribute the resulting
aggregation provided that you do not charge a licensing fee for the
Package. Distributor Fees are permitted, and licensing fees for other
components in the aggregation are permitted. The terms of this license
apply to the use and Distribution of the Standard or Modified Versions
as included in the aggregation.

(8) You are permitted to link Modified and Standard Versions with
other works, to embed the Package in a larger work of your own, or to
build stand-alone binary or byte code versions of applications that
include the Package, and Distribute the result without restriction,
provided the result does not expose a direct interface to the Package.

250 -

Alan Adventure System - Reference Manual

Items That are Not Considered Part of a Modified Version

(9) Works (including, but not limited to, modules and scripts) that
merely extend or make use of the Package, do not, by themselves, cause
the Package to be a Modified Version. In addition, such works are not
considered parts of the Package itself, and are not subject to the terms of
this license.

General Provisions

(10) Any use, modification, and distribution of the Standard or Modified
Versions is governed by this Artistic License. By using, modifying or
distributing the Package, you accept this license. Do not use, modify, or
distribute the Package, if you do not accept this license.

(11) If your Modified Version has been derived from a Modified
Version made by someone other than you, you are nevertheless required
to ensure that your Modified Version complies with the requirements of
this license.

(12) This license does not grant you the right to use any trademark,
service mark, trade name, or logo of the Copyright Holder.

(13) This license includes the non-exclusive, worldwide, free-of-
charge patent license to make, have made, use, offer to sell, sell,
import and otherwise transfer the Package with respect to any
patent claims licensable by the Copyright Holder that are
necessarily infringed by the Package. If you institute patent
litigation (including a cross-claim or counter-claim) against any
party alleging that the Package constitutes direct or contributory
patent infringement, then this Artistic License to you shall
terminate on the date that such litigation is filed.

(14) Disclaimer of Warranty: THE PACKAGE IS PROVIDED BY
THE COPYRIGHT HOLDER AND CONTRIBUTORS "AS IS' AND

- 251

Alan Adventure System - Reference Manual

WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES. THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE, OR NON-INFRINGEMENT ARE
DISCLAIMED TO THE EXTENT PERMITTED BY YOUR LOCAL
LAW. UNLESS REQUIRED BY LAW, NO COPYRIGHT HOLDER
OR CONTRIBUTORWILL BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
ARISING IN ANY WAY OUT OF THE USE OF THE PACKAGE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

I.2 Executive Summary

So, in short, the interpreter Arun and any game produced using the Alan
System is yours. You may sell or copy it as you like, and as you need
the interpreter to run the game, it may be copied freely too. The Arun
interpreter may also be uploaded on BBS'es or FTP-sites to allow
players to download an interpreter for his platform and use that to run
your game.

The documentation and examples are free to copy or place on any
BBS'es or FTP-sites if their contents are not changed.

If you create a game using the Alan System, we’d very much like to see
it. Send us a copy (preferably in source) and any documentation or a
description of the game and its novel features. We will of course honour
any copy-restrictions that you might want to place on it.

Short games or samples of Alan source are also most welcome as
examples that we might use and distribute to other users. Sending an
example means that you waive all rights to it. If you also supply a
walkthrough to your example it will be added to the growing suite of
test data and thus help us further improve the quality of the Alan
system.

252 -

Alan Adventure System - Reference Manual

INDEX
A
abstract attribute.....................................72

Abug...188

actor..26
behaviour...26
predefined class...........................36, 59

ACTOR...
in what specifications......................140

actor description.....................................59

actors...
execution context.............................163
hints about..174
moving...164

adjective..66

AFTER qualifier...................................106

ALL..................81, 94, 103, 161, 211, 212

AND.......................................94, 160, 161

article..78

Arun......................................187, 205, 210

attribute...
pre-defined.................................82, 143

attributes...32, 167
boolean...70
declaration..69
event type...71
numeric ...70
of reference type................................71
pre-defined...

location..143

opaque...82

visits..137

string..70

B
basic type..51

BEFORE qualifier................................106

BETWEEN...147

BNF..221

BUT..161, 212

C
CANCEL statement..............................126

character combinations, in strings........118

character sets..50

CHECK...102
in exits..88, 164
in verbs...41

check, unconditional.............................102

checks...
execution order................................109

class..
syntax for...55

class expressions...................................145

classes...55

comparisons..
equality..146

compatible types.....................................53

computer language.................................20

concatenation..
of strings..146

CONTAINER...82

container property.......................................

- 253

Alan Adventure System - Reference Manual

of objects..81
Opaque...82

containment operator............................147

CONTAINS..147

COUNT..150
in limits..84

Current Actor..147

Current Location...................................147

D
debugging...187

DECREASE statement.........................128

default...
attributes..171
syntax...42

DEPENDING ON statement................131

DESCRIBE statement...........................120

description..
of locations...61

Description...
of locations...30

DESCRIPTION..
of actor scripts...........................89, 175

Description clause..................................75

descriptions...
execution context.............................163

DIRECTLY..149

DOES..
in descriptions....................................77
in exits..164
in locations.......................................164
in verbs...104

doors, hints about.................................172

double quotes..156

E
EMPTY statement................................124

Entered clause...76

entity...
predefined class...........................36, 58

EVENT...109

event type...52

events..
execution context.............................163
hints about..172

EVERYTHING....................................161

EXCEPT.......................................161, 212

execution...
contexts..162
of an adventure..........................24, 159

execution context..
Initialize clause..................................75

Exit...30

EXIT...88, 164

expressions...141

EXTRACT..85

H
HERE..138

hero...164

hero, the..60

I
identifier...

quoted..66

identifiers..
lexical definition..............................153

If statement.......................................32, 54

IF statement..130

254 -

Alan Adventure System - Reference Manual

import statement.....................................54

INCREASE statement..........................128

indicator..
multiple..94
omnipotent...94

INDIRECTLY......................................149

Infocom..18, 19

inheritance..34, 56

inheriting attributes.................................73

inheriting properties, rules for................63

Initialize clause.......................................75

initialize empty set..................................72

instance...
displaying...67

instance type...52

instances...56

integer...
predefined class.................................36

interpreter.....................................187, 205

IT 161, 211

L
languages..210

LIMITS...83

LIST statement.....................................121

literal...
predefined class.................................36

literals...62, 141

Locate statement.....................................33

LOCATE statement..............................123

locating inside containers83, 124

location...25, 29
of 143, 181

pre-defined attribute........................143
predefined class.................................36

LOCATION..
in what specification........................140

locations..61

logical expressions................................144

LOOK statement...........................134, 135

M
Make statement.......................................32

MAKE statement..................................127

map...25

MAX aggregate....................................150

MENTIONED..80

Meta Verbs...101

MIN aggregate......................................150

Multi-media Statements........................122

multinational characters.........................50

multiple indicator.................................161

multiple parameters..............................161

N
Name...

of locations................................66, 154

Name clause..65

names..
inheriting..67
multiple..66

NEARBY..139

nested locations..............................61, 124

noun..66

numbers..
lexical definition..............................155

- 255

Alan Adventure System - Reference Manual

O
object..31

predefined class...........................36, 59

object orientation....................................34

omnipotent indicator162

ONLY qualifier....................................106

opaque...
pre-defined attribute..........................82

Opaque..82
container property..............................82

operators...
binary...146
logical..144
relational..................................146, 147

options..48, 49

output statements..................................118

P
parameter..42, 96

indicators..94
referencing.......................................161

Play...122

player commands..................................159

polymorphism...35

pre-defined attribute.............................137
visits...137

predefined classes...................................35

prompt..30

Prompt Section.....................................115

pronoun...
predefined..69

Pronoun clause.......................................68

properties..62

property..62

Q
QUIT statement....................................134

quoted identifier.............................66, 153

R
Random..................59, 114, 125, 143, 144

expression..143
Random In.......................................143

reference attribute...51, 52, 53, 71, 72, 74,
121, 128, 129, 133, 142, 233

RESTORE statement............................135

restriction..
of parameters.....................................43

restriction, of parameters........................96

rule..110

rules..
executing..111
execution context.............................163

S
SAVE statement...................................135

SAY statement......................................120

SCHEDULE statement.........................125

SCORE statement.................................135

SCRIPT...89

semantics..
 of locations..61

semantics of pre-defined classes......36, 57

Set statement...32

SET statement.......................................128

set type..53

set type attributes....................................72

shadow object;object..................................
shadow...184

256 -

Alan Adventure System - Reference Manual

Show...122

single quotes...155

spacing, in strings.................................156

specialisation..37

start section.....................................48, 116

STEP...91

step, executing the last............................91

string...
comparisons.....................................146
functions..125
predefined class.................................36

String..30

STRING..118

strings...
lexical definition..............................156

STRIP statement...................................125

sub-classing..37

SUM aggregate.....................................150

SYNONYMS..112

Syntax...42

SYNTAX..92

syntax, default..98

T
THEM...161, 211

THEN...160

thing..
predefined class.................................36
 predefined class58

THIS expression...................................148

transitivity...
Direct...149
Indirect...149

types of expressions141

typographical notation............................28

U
undo..164

Use statement..54

USE statement................................89, 132

V
verb...27

alternative105
execution context.............................162
execution order..........................43, 108
Meta...101
qualifiers104, 106
reusing common..............................171

Verb..39

VERB...100

visits..137
pre-defined attribute........................137

VISITS statements................................136

W
what specifications...............................140

WHEN..110

where specification...............................138

- 257

	1 Introduction
	1.1 Programmer’s Pitch
	1.2 To the Reader

	2 Concepts
	2.1 What Is An Adventure?
	2.2 Elements Of Adventures
	2.3 Alan Fundamentals
	What Is A Language?
	The Alan Idea
	What’s Happening?
	The Map
	The Things
	Other People and Monsters
	Acting
	The Input

	2.4 Introduction to the Language
	Notation
	The Locations
	The Objects
	The Actors
	Inheritance and Object Orientation
	Inheritance and Instances
	Polymorphism
	Every and The
	The Pre-defined Classes
	Creating Classes and Instances
	Specialising and Overriding

	Containment , Classes and Transitivity
	Containers Containing Containers
	Transitivity

	The Verb Construct
	Checking Things

	The Syntax
	Text Output Formatting

	2.5 Strict and Safe

	3 Language Reference
	General Rules
	3.1 An Adventure
	3.2 Options
	3.3 Types
	Basic, Simple and Compound Types
	Instance Type
	Event Type
	Set Type
	Type Compatibility
	Type Requirements

	3.4 Import
	3.5 Classes
	Inheritance

	3.6 Instances
	Entities
	Things
	Objects
	Actors
	The Hero

	Locations
	Literals

	3.7 Properties
	Inheriting Properties
	Initial Location
	Names
	Inheriting Names
	Displaying Instances

	Pronouns
	Attributes
	Boolean Attributes
	Numeric and String Attributes
	Event Attributes
	Reference Attributes
	Set Type Attributes
	Inheriting Attributes

	Initialize
	Description
	Articles and Forms
	Articles
	Form
	Printing

	Mentioned
	Container Properties
	Limits
	Header and Else
	Extract

	Verbs
	Entered
	Exits
	Scripts
	Steps

	3.8 Additions
	3.9 Syntax Definitions
	Indicators
	Parameter Restrictions
	Syntax Synonyms
	Default Syntax
	Scope

	3.10 Verbs
	Meta Verbs
	Verbs in Locations
	Verb Checks
	Does-clause
	Verb Alternatives
	Verb Qualification
	Verb Execution
	Controlling Execution with Qualifiers

	3.11 Events
	3.12 Rules
	3.13 Synonyms
	3.14 Messages
	Message parameters

	3.15 Prompt Section
	3.16 Start Section
	3.17 Statements
	Output Statements
	String Statement
	Style Statement
	Describe Statement
	Say Statement
	List Statement

	Multi-media Statements
	Show Statement
	Play Statement

	Manipulation Statements
	Locate Statement
	Empty Statement
	Strip Statement

	Event Statements
	Schedule Statement
	Cancel Statement

	Assignment Statements
	Make Statement
	Increase and Decrease Statements
	Set Statement
	Include Statement
	Exclude Statement

	Conditional Statements
	If Statement
	Depending On Statement

	Actor Statements
	Use Statement
	Stop Statement

	Repetition Statements
	Special Statements
	Quit Statement
	Look Statement
	Save and Restore Statements
	Score Statement
	Visits Statement
	Transcript Statement

	3.18 WHERE Specifications
	3.19 WHAT Specifications
	3.20 Expressions
	Types of Expressions
	Literal Values
	Attribute References
	Location Of

	Random Values
	Logical Expressions
	Class Expressions
	Binary Operators
	Relational and Equality Operators
	String Containment
	Current Entities
	This Instance
	The Whereabouts of an Entity
	Aggregates

	3.21 Filters

	4 Lexical Definitions
	4.1 Comments
	4.2 Words, Identifiers and Names
	4.3 Numbers
	4.4 Strings
	4.5 Filenames

	5 Running An Adventure
	5.1 A Turn of Events
	5.2 Player Input
	5.3 Run-time Contexts
	5.4 Moving Actors
	5.5 Undoing
	5.6 Scripting and Commenting

	6 Hints And Tips
	6.1 Use of Attributes
	6.2 Descriptions
	6.3 Common Verbs
	6.4 Distant Events
	6.5 Doors
	6.6 Questions and Answers
	6.7 Actors
	6.8 Vehicles
	6.9 Floating Objects
	Body Parts
	Outdoors and Indoors
	Nested Locations as a Solution

	6.10 Darkness and Light Sources
	6.11 Distant & Imaginary Objects
	A Mountain
	The Melody

	6.12 Using Events as Functions
	6.13 Structure
	6.14 Debugging
	Command Logs and Game Transcripts
	Interpreter and Instruction Trace
	Debug mode
	Using the Debugger

	7 Adventure Construction
	7.1 Getting an Idea
	7.2 Elaborating the Story
	7.3 Implementing it
	7.4 Polishing the Adventure
	7.5 Beta Testing
	Appendix A: How To Use The System
	A.1 Compiling
	A.2 Compiler Switches
	A.3 Running the Adventure
	A.4 Interpreter Switches

	Appendix B: A Sample Interaction
	Appendix C: Run-time Messages
	C.1 Input Response Messages
	C.2 System Errors

	Player Errors
	Author Errors
	Implementor Errors
	Appendix D: Language Grammar
	D.1 Description
	D.2 Keywords

	Appendix E: Predefined player words

	English
	Swedish
	German
	Appendix F: Compiler Messages
	F.1 Format of messages
	F.2 Message explanations

	Appendix G: Localization
	G.1 Character/Glyph availability
	G.2 Standard messages
	G.3 Player words
	G.4 Word variations
	G.5 Word order

	Appendix H: Portability of Games
	Appendix I: Copying Conditions
	I.1 Artistic License 2.0

	Preamble
	Definitions
	Permission for Use and Modification Without Distribution
	Permissions for Redistribution of the Standard Version
	Distribution of Modified Versions of the Package as Source
	Distribution of Compiled Forms of the Standard Version or Modified Versions without the Source
	Aggregating or Linking the Package
	Items That are Not Considered Part of a Modified Version
	General Provisions
	I.2 Executive Summary

